Evaluation of Forest Road Scenarios Using Field Measurements and the Distributive Hydrology Soil Vegetation Model (DHSVM)

South Fork of Caspar Creek

California Board of Forestry
November 4, 2020

Christopher Surfleet, PhD
Field Measurements

16 Road Flumes:

- 6 - Runoff, Turbidity, Suspended Sediment Measurement (RTS)
- 10 - Crest Stage Gauges

Measured road runoff from November 2018 – March 2019

22 Road Runoff events

Turbidity and Stage
- Above/below Class I watercourse crossing.
- Above/below Class II watercourse crossing.
Runoff,
Turbidity,
Suspended
Sediment
Measurement
Site 16

Site 12

Runoff,
Turbidity,
Suspended
Sediment
Measurement
Site 16

Site 4
Total Suspended Sediment Load by Road Surface Type

<table>
<thead>
<tr>
<th>Surface Type</th>
<th>This Study</th>
<th>Barrett et al. 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>0.01 – 0.85 kg/m²/yr</td>
<td>0.02 – 0.8 kg/m²/yr</td>
</tr>
<tr>
<td>Native</td>
<td>17.8 – 41.0 kg/m²/yr</td>
<td>0.1 – 4.5 kg/m²/yr</td>
</tr>
</tbody>
</table>

Reid and Dunne (1984) 130 X for heavily used roads
Megahan and Kidd (1972) 750 X for newly constructed roads
Coe (2006) 3-4X for recently graded compared to ungraded
Prediction of Suspended Sediment Load ($\log_{10} \text{SSL}$)

Predictors

- Peak flow (from road storm runoff)
 Adj. $R^2 = 0.80$

- Maximum turbidity $^{1/3}$

Prediction improved by addition of:
- Cutslope cover
 Adj. $R^2 = 0.84$

- or

- Road surface type
 Adj. $R^2 = 0.86$

Road Site 17 Select Storms

- Runoff Depth (ft)
- Turbidity (NTU)

2/12/2019, 2/15/2019, 2/18/2019
Road dimensions and Precipitation to Predict Suspended Sediment Load (SSL) or Peak Flow

Log Suspended Sediment Load (kg) =

(+) Length x Slope2
(+) Road surface type (native or rocked)
(-) Cutslope area
(+) Storm Precipitation Total.

Adj $R^2 = 0.81$
Distributed hydrology-soil-vegetation model (DHSVM)

- Physically based hydrologic model that represents the effects of
 - Topography
 - Soil
 - Vegetation
- Solves the energy and water balance at each grid cell at each timestep

Calibration and Uncertainty

Monte Carlo 10,000 Simulations 2015-2018 hydrologic years

Result is a range of model outputs that provide reasonable models

DHSVM Road Modelling

- Road interception model
- Road overland flow to sink points
- Calibration based on trial and error adjustments of road length, width, infiltration rate, cutslope height.
Road Scenarios Modelling

- All models used 2015-2019 Climate

<table>
<thead>
<tr>
<th>Road Network</th>
<th>Road Scenario</th>
<th>Min. Length m (ft)</th>
<th>Max. Length m (ft)</th>
<th>Average Length m (ft)</th>
<th>Road Density m/ha (mi/ mi²)</th>
<th>Percent Road* Length within 60 m of watercourses (200 ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018 CFPR Roads</td>
<td>2018</td>
<td>8 (26)</td>
<td>19 (62)</td>
<td>14 (45)</td>
<td>42.3 (6.8)</td>
<td>13% (3%*)</td>
</tr>
<tr>
<td>Pre-2010 Roads**</td>
<td>2018</td>
<td>14 (46)</td>
<td>39 (128)</td>
<td>27 (87)</td>
<td>42.3 (6.8)</td>
<td>13% (3%*)</td>
</tr>
<tr>
<td>Pre-1974 CFPR Road Rules</td>
<td>Pre-1974</td>
<td>6 (20)</td>
<td>23 (76)</td>
<td>17 (57)</td>
<td>45.7 (7.3)</td>
<td>58%</td>
</tr>
<tr>
<td>Pre-1974 Pre-2010 Roads**</td>
<td>Pre-1974</td>
<td>14 (46)</td>
<td>35 (115)</td>
<td>24 (92)</td>
<td>45.7 (7.3)</td>
<td>58%</td>
</tr>
<tr>
<td>Pre-1974 Pre-1973 CFPRs</td>
<td>Pre-1974</td>
<td>186 (610)</td>
<td>317 (1040)</td>
<td>237 (780)</td>
<td>45.7 (7.3)</td>
<td>58%</td>
</tr>
</tbody>
</table>
Drone view of Ziemer watershed post-harvest (photo credit Ryan McGrath, June 2018)
Suspended Sediment Load Predicted by Simulated Runoff

Log storm sediment load (kg) = \(2.42 + 0.0483 \times \text{low peak flows} - 1.804 \times \text{surface type}\)

Log storm sediment load (kg) = \(2.33 + 0.0342 \times \text{median peak flows} - 1.773 \times \text{surface type}\)

Log storm sediment load (kg) = \(2.25 + 0.0256 \times \text{high peak flows} - 1.724 \times \text{surface type}\)

Coefficient p values = 0.03 to <0.0001; adj. \(R^2 = 0.65\) to 0.78
Road Suspended Sediment Load by Scenario

<table>
<thead>
<tr>
<th>Forest Vegetation and Road Network</th>
<th>Road Scenario</th>
<th>South Fork Caspar Mean Annual Road Only SSL kg/ha/yr</th>
<th>Ziemer Mean Annual Road Only SSL kg/ha/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-harvest Veg. 2018 Roads</td>
<td>2018 CFPR</td>
<td>22.9 – 35.1</td>
<td>0</td>
</tr>
<tr>
<td>Post-harvest Veg. 2018 Roads</td>
<td>Pre-2010 CFPR</td>
<td>52.8 – 85.8</td>
<td>0</td>
</tr>
<tr>
<td>Post-harvest Veg. Pre-1974 Roads</td>
<td>2018 CFPR</td>
<td>346.9 – 469.4</td>
<td>20.8 – 28.2</td>
</tr>
<tr>
<td>Post-harvest Veg. Pre-1974 Roads</td>
<td>Pre-2010 CFPR</td>
<td>409.6 – 594.3</td>
<td>24.6 – 35.7</td>
</tr>
<tr>
<td>Post-harvest Veg. Pre-1974 Roads</td>
<td>Pre-1973 CFPR</td>
<td>954.8 – 2158.2</td>
<td>57.3 – 129.5</td>
</tr>
</tbody>
</table>

Graphs

- **SFC Median SSL**
 - Lewis et al., 1998
 - 1475 kg/ha/yr

- **Ziemer Median SSL**
 - CFPR 2018
 - Pre-2010 CFPR
 - Pre-1973 CFPR
Peak Flow Changes

<table>
<thead>
<tr>
<th>Road Network</th>
<th>Scenario</th>
<th>South Fork Caspar Peak Flow Increase</th>
<th>Ziemer Peak Flow Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Roads</td>
<td>No roads</td>
<td>1.5% - 11%</td>
<td>2.6% - 17.6%</td>
</tr>
<tr>
<td>2018</td>
<td>2018 CFPR</td>
<td>2.7% - 12.6%</td>
<td>2.6% - 18.0%</td>
</tr>
<tr>
<td>2018</td>
<td>Pre-2010 CFPR</td>
<td>2.7% - 12.6%</td>
<td>2.4% - 18.1%</td>
</tr>
<tr>
<td>Pre-1974</td>
<td>2018 CFPR</td>
<td>1% - 35%</td>
<td>5% - 40%</td>
</tr>
<tr>
<td>Pre-1974</td>
<td>Pre-2010 CFPR</td>
<td>1% - 40%</td>
<td>5% - 53%</td>
</tr>
<tr>
<td>Pre-1974</td>
<td>Pre-1973 CFPR</td>
<td>15% - 46%</td>
<td>5% - 87%</td>
</tr>
</tbody>
</table>

Ziemer Harvesting 2018
Conclusions

• Suspended sediment load was best predicted by the peak flow and the maximum turbidity of road runoff events.

• The statistical model was improved by including measures of soil cover:
 • road surface type (rocked or native)
 • cutslope cover percentage

• Suspended sediment load was best predicted with only road dimensions (no runoff or turbidity) by:
 • Road length x slope²
 • Road surface type (rock or native)
 • Road cutslope height
 (indicates proximity to hillslope drainage was important)
Conclusions (Continued)

• Peak flows and suspended sediment loads were estimated to increase following forest harvest.

• The peak flow increases were larger for the Ziemer watershed. Due to higher harvest level.

• The South Fork Caspar Creek 2018 road network was very effective in reducing peak flow and suspended sediment impacts.

• A road network with a high proportion of streamside roads, even with hydrologic disconnection practices, will still contribute to cumulative watershed impacts.
Acknowledgements

• Financial support by California Department of Forestry and Fire Protection
 Caspar Creek Phase III Study agreement #8CA03637.

• The USFS Pacific Southwest Research station provided instruments and supplemental data. Thanks Elizabeth Keppeler and Jayme Seehafer!

• Field and research support Elizabeth Keppeler, Lynn Webb, Kurt ODwyer, Samasoni Matagi, Julie Ridgeway, Tyler Davis.

• Report reviews by Pete Cafferata, Elizabeth Keppeler, Lynn Webb, Kurt ODwyer, Joseph Wagenbrenner, Drew Coe.
Questions ?