Evaluating native bee community response to fuel-reduction treatments in managed forests.

Megan Sampognaro

Objective Background Methods

Expected Results

Broader impacts

Study objective: To quantify bee abundance and diversity in sites with fuel break treatments compared to untreated reference SILES.

Background: The importance of animal pollinators

90% of the worlds flowering plants

87 out of 115 main global food crops rely on pollinators

over \$195 billion per year in ecosystem services globally

Land use change and loss of habitats

Bees in decline

WHY ARE POLLINATORS DECLINING?

Environmental pollution

Intensive agricultural management and pesticides use

Climate change

Invasive alien species and diseases

Flowering plants

Critical resources for bees

Food

Nesting

Cavities in pithy stems, wood and bare ground

Land management

Natural disturbances

Fire severity and intensity

HIGH INTENSITY

Illustration by Andrew Sullivan/CSIRO, 2021.

Changing fire regimes

MODERATE INTENSITY

LOW INTENSITY

A need for fuel management

Shaded fuel breaks

Creates defensible space along an access point

 Removal of large fuels such as trees, shrubs and logs

the season

Shade keeps the ground cool and damp later into

Untreated

Treated

Study Area: Northern California, Cascades Eco-Region

Site Selection

Current and recent logging (<10 y)

Recent burns (<10 y)

- **All sites:** Unburned in last 10 years
 - side of the road.
- Sites are at least 1 km in length
- **26 Treated Fuel Breaks**
- Range of years 2017-2022
- **8 Reference Sites**
- Greater than 60% canopy cover
- Stand age 10+ years

At least 40 meters on either

Shaded fuel breaks

Reference sites

1. Bees

3. Vegetation survey

4. Pollen

Methods

2. Floral resources

5. Reed nesting traps

2023- 2 sampling rounds

2024 – 3 sampling rounds

- Per Site:
- 4 transects
- Netting 15 min per transect for bees (2 hr total)
- Trapping 12
 pan traps, 4
 blue vane traps
- Floral
 resources

Fuel break sampling design

Untreated mature stand **Blue vane**

Netting and floral transect (3 x 15 m)

Not to scale!

post, yellow pan trap with soapy water.

Bee sampling methods

(left to right) Crew member Adrienne Martineau netting in a transect, blue vane trap on t-

Netting Rounds

Hand netted bees off flowers

- (Bombus occidentalis)

Checked for species of concern including the western bumble bee

 Queens were released after taking photos to minimize impacts on colony

Trapping Rounds

Quantifying floral resources

Vegetation survey in 2024

Stand density Canopy cover Shrub cover Bare ground

Woody debris

Additional studies: Pollen bees

Reed traps

What bees and wasps will colonize the provided nests?

Xray back at the lab to look for bee and parasitic wasp larvae

Lab technicians: Amanda Hopper-Moore, Christoph Anderson, Erin Leal, Jaden Torres, Jane O' Sullivan (photo), Sophia Gutierrez

Specimen processing

Fuel break treatment effects on floral resources

Treatment

Thinning trees and shrubs

Expected Results

Primary effects

Lower canopy cover, more light availability and bare ground

Secondary effects

More herbaceous flowering plants

Prediction 1: Floral resources will be more abundant in treatment sites with lower canopy cover and less abundant in reference sites with higher canopy cover

Treatment

Reference

Prediction 2: Bee richness will be higher in fuel break treatments relative to reference sites.

Bee Richness

Treatment

Reference

Prediction 3: Diversity will differ between sites when rare species are weighted more.

Bee Diversity

q=0: species equally weighted q<1: more weight given to rare species q>1: more weight given to abundant species

Broader impacts:

Management decisions

• Policy

 Bee habitat and populations

Fuel break treatment effects on nesting resources

Treatment method

Removal of large woody debris and soil disturbance

Leaving large woody debris

Primary effects

More bare ground

Less bare ground

Secondary effects

Less cavity nesting resources- reeds/beetle holes

More cavity nesting resources- reeds/beetle holes

Removal of shrubs in site, but still on edges

Less native flowering shrubs like manzanita and more bare ground

More flowering plants Possibly non-native

Time since treatment

Since our study is in dry forests, growth is slower, and canopy closure may take longer than in previous studies of canopy closure in wet forests, so time since treatment may not be as closely related to canopy closure in these systems