

Balancing fuel considerations and rare carnivore habitat: an evaluation of risk and reward *EMC update 16 June 2025*

Jessica K. Buskirk, David Lamphear*, Holly Munro, Josh Twining*, John Bailey, and Katie M. Moriarty

Update: Humboldt marten vegetation data collection on Green Diamond

Bonus 1: is it possible to identify shrub characteristics through LiDAR?

Bonus 2: can we use new technology to evaluate fisher use of slash piles?

Resting areas must provide...

- Safety from predators
- Thermal refuge

Finding these areas is hard!!

- Expensive
- Invasive

Received: 7 October 2022 Revised: 18 January 2023 Accepted: 24 January 2023

DOI: 10.1002/jwmg.22388

RESEARCH ARTICLE

THE

SOCIETY

Structural complexity characterizes fine-scale forest conditions used by Pacific martens

Matthew S. Delheimer	¹ Katie M. M	lori	iarty ² 💿
Holly L. Munro ³ 💿	Desiree A. Early ⁴	L	Keith A. Hamm ⁴ 0
Rebecca E. Green ⁵			

Southern OR, National Forest

erald Forest Cabins & RV

Q C Click to toggle time slider animation

Aimed to address marten vegetation knowledge gap on private California forests by...

- Identifying marten resting areas
- Measuring vegetation conditions at used & random locations

- GPS collared 9 martens
- Identified 60 spatial GPS clusters
- With new design, identified 60
 stratified random locations

Collected vegetation data at 16 used and 13 random plots Crew started June 10, 2025!

Kilometers

Sources: Esri, HERE, Garmin, Intermap, Increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community

Collecting 40 vegetation metrics, including...

Plot metrics

- basal area (m²/ha)
- # live trees & snags
- % shrub cover
- visual obstruction (horizontal cover)
- large material
 - Logs and stumps
 - Slash and rock piles

One example from Southern Oregon data

Building decision trees using:

- Plot level vegetation data
- Boosted C5.0 algorithm via recursive partitioning

Tree # 5 Lowest error (21.5%)

Example from Southern Oregon

Retained 22/40 variables for final modeling 11/22 variables appeared in **6 final trees**

Southern Oregon marten resting conditions:*

Bonus 1: Using detailed field-based plot measurements to calibrate LiDAR

Bonus 1: Using detailed field-based plot measurements to calibrate LiDAR

Bonus 2: Can new technology elucidate fisher use of slash piles?

0

ONCASI

IMPACT. SCIENCE. SOLUTIONS.

Oregon State University

S NCASI

Thank you!!!

GREEN DIAMOND RESOURCE COMPANY

Tree # 3 Overall error (37.2%)

