Hydrologic response to forest treatment practices for wildfire mitigation in a Sierra Nevada watershed

AGU Fall National Meeting, December 2021

Kate Boden, Jake Kurzweil, Daniel Philippus, Jackie Randell, Anneliese Sytsma, Alicia Kinoshita, Terri Hogue

FUNDING BY THE EFFECTIVENESS MONITORING COMMITTEE (EMC), STATE OF CALIFORNIA BOARD OF FORESTRY AND FIRE PROTECTION
“The age of the Megafire”

• “Megafire” is a fire that burns more than 100,000 acres

• Before 1950 no megafires were documented but in 2020 alone the United States experienced 11

• Since 2003 California has experienced 17 of its 20 largest fires on record

Source: Reuters 2020
Forest treatments- methods to reduce fuel loads
Are forest treatments a triple win?

1. Forest treatments mitigate wildfire impacts
2. Forest treatments increase biodiversity
3. Forest treatments increase runoff
Wildfires are known to increase runoff

Mechanism - altering the forest structure leads to an altering of water partitioning across the landscape

Annual Water Budget Approach

Storage = Inputs - outputs

\[\Delta S = P - (R + ET) \]

\[P = R + ET \]

Idea: If we can show a change ET due to a change in forest structure we can use a water budget approach to predict the increase in runoff depth
Research Question

How do forest treatments impact runoff? At what spatial scale?

Specifically, do forest treatments impact water yield?

Water yield- total amount of water collected in a watershed in a given year
Sagehen Watershed- Eastern Sierra’s, CA

Area: 30 km2

Average Precipitation: 800 mm

Snowfall: 80% of precipitation

Peak flow: May

Min flow: September
Variable precipitation over Sagehen during period of study
Sagehen Basin Water Budget
High variability in Precip and low variability in ET
Sagehen Basin Water Budget
High variability in Precip and low variability in ET

Treatment begins
Changes in runoff is explained by precipitation

Simple Linear Regression

\[R^2 = 0.96 \]

\[\text{Runoff} = mP + b \]

\[m = 0.63 \]
\[b = -292.3 \]
Highly variable runoff depth between 2001-2020

Total Runoff Depth for WYs 1953-2020

Boxplot for WYs 1953-2011, Blue Dots WYs 2013-2020
<table>
<thead>
<tr>
<th>Sub-basin</th>
<th>Area (km^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.02</td>
</tr>
<tr>
<td>4</td>
<td>2.95</td>
</tr>
<tr>
<td>5</td>
<td>19.96</td>
</tr>
<tr>
<td>6</td>
<td>13.79</td>
</tr>
<tr>
<td>7</td>
<td>1.71</td>
</tr>
<tr>
<td>8</td>
<td>4.48</td>
</tr>
<tr>
<td>9</td>
<td>4.87</td>
</tr>
<tr>
<td>10</td>
<td>2.36</td>
</tr>
<tr>
<td>15</td>
<td>24.22</td>
</tr>
</tbody>
</table>
Changes in runoff at sub-basin scale is explained by precipitation alone.
Significant change in ET not observed at sub-basin scale
Relative Change in Forest Density 2014-2018
100m x 100m LiDAR Pixels
Relative Change in Forest Density 2014-2018
100m x 100m LiDAR Pixels

Legend
- -35% to -30%
- -30% to -25%
- -25% to -20%
- -20% to -15%
- -15% to -10%
- -10% to -5%
- -5% to no change
- No change to 5%
- 5% to 10%
- 10% to 15%
- 15% to 20%
- 20% to 25%
- 25% to 30%
- 30% to 35%
- 35% to 40%
- 40% to 50%
- 50% to 100%
- 100% or more

Relative Change: 2014-2018
<VALUE>
- -75% or less
- -75% to -50%
- -50% to -40%
- -40% to -35%
Median forest density change in sub-basins is minimal but there is significant variation.
Change in forest density “hot spots” can be linked with change in ET

<table>
<thead>
<tr>
<th>Basin</th>
<th>SGH 15</th>
<th>SGH 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Area (km²)</td>
<td>34.22</td>
<td>3.02</td>
</tr>
<tr>
<td>Median Forest Density Change</td>
<td>-0%</td>
<td>-5%</td>
</tr>
<tr>
<td>Median ET Change</td>
<td>< 1 %</td>
<td>< 1 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hotspots</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of change (km²)</td>
<td>~0.5</td>
<td>~0.3</td>
</tr>
<tr>
<td>Median Forest Density Change</td>
<td>-25%</td>
<td>-22%</td>
</tr>
<tr>
<td>Median ET Change</td>
<td>-25%</td>
<td>-12%</td>
</tr>
</tbody>
</table>
Strong correlation when sub-dividing sub-basin 2 into 7 sub-sub basins

\[R^2 = 0.91 \]

slope = 1.4 y-intercept = 13

\[= 0.6 \text{ km}^2 \]

Largest hot spot found is less than 2% of the area of the watershed.
Concluding Thoughts

No measurable increase in water yield due to forest treatments. Potential reasons for this…

1. **Forest treatments were just too small**
 - < 15% median change in ET in all sub-basin

2. **Precipitation variability dominates ET variability**
 - Simple bivariate regressions are sufficient in explaining changes in runoff depth

However, zooming in to hot spots reveals that forest density change, measured with LiDAR can be correlated to ET.

An extrapolation of this may be able to be used in conjunction with a water budget approach to predict increase in runoff due to > 15% change in ET.
Thanks!