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Abstract. The overwhelming majority of information on historical forest conditions in
western North America comes from public lands, which may provide an incomplete descrip-
tion of historical landscapes. In this study we made use of an archive containing extensive tim-
ber survey data collected in the early 1920s from privately owned forestland. These data
covered over 50,000 ha and effectively represent a 19% sample of the entire area. The historical
forest conditions reconstructed from these data fit the classic model of frequent-fire forests:
large trees, low density, and pine-dominated. However, unlike other large-scale forest recon-
structions, our study area exhibited relatively low overall variability in forest structure and
composition across the historical landscape. Despite having low variability, our analyses
revealed evidence of biophysical controls on tree density and pine fraction. Annual climatic
variables most strongly explained the range in historical tree densities, whereas historical pine
fraction was explained by a combination of topographic and climatic variables. Contemporary
forest inventory data collected from both public and private lands within the same general
area, albeit not a direct remeasurement, revealed substantial increases in tree density and
greatly reduced pine fractions relative to historical conditions. Contemporary forests exhibited
a far greater range in these conditions than what existed historically. These findings suggest
that private forestland managed with multiaged silviculture may be similar to public forestland
with respect to departure in forest structure and compositions from that of historical forests.
However, there may be differences between management objectives that favor timber produc-
tion, more typical on private lands, vs. those that favor restoration, increasingly supported on
public lands.
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INTRODUCTION

Historical ecological information is essential for
understanding the dynamics of ecosystems that are sub-
stantially departed from their “natural” states (Swetnam
et al. 1999). The availability of robust and extensive his-
torical ecological data is limited for many ecosystem
types because of the lack of either preserved remnant
material or archived observations. Forests of western
North America are an exception in that there is a relative
abundance of preserved material (e.g., sedimentary char-
coal and pollen, tree rings) and archived data (e.g.,

timber inventories, aerial photographs). The historical
ecological information gleaned from these sources has
been used to help guide forest restoration efforts (Long
et al. 2014, Stine et al. 2014, Spies et al. 2018).
The overwhelming majority of information on histori-

cal forest conditions in western North America comes
from public lands (Romme 1982, Ful�e et al. 1997, Lar-
sen 1997, Taylor 2000, Moore et al. 2004, Brown et al.
2008, Hagmann et al. 2019). The reasons for this include
access to publicly available historical data, funding from
public land management agencies, and access to study
sites. Although public forest lands likely span wide eco-
logical and environmental gradients, it is unclear if the
existing reconstructions cover the range of conditions
that may have existed historically on private forest land.
One could surmise that the acquisition of private forest-
land was not based on random selection; rather it was
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likely based on forest and landform characteristics that
were more favorable for timber management. As an
example, Collins et al. (2015) noted that areas surveyed
by the U.S. Forest Service in 1911 within a central Sierra
Nevada mixed-conifer forest tended to have lower eleva-
tions than areas not surveyed but within the same study-
area boundary. A majority of these unsurveyed areas
had land patents on them, which are often a precursor
to private acquisition of public land (Collins et al.
2016). Higher elevations corresponded with greater den-
sities of large trees, which presumably would be pre-
ferred for private timberland acquisition (Collins et al.
2015). The upshot is that our representation of historical
landscapes may be incomplete because of the lack of his-
torical data from private forestlands.
Early timber inventories have been used to describe

historical forest conditions in a number of independent
study sites in California and Oregon (Hagmann et al.
2013, 2014, Collins et al. 2015, Stephens et al. 2015,
2018). The inventories were largely conducted prior to
the major structural and compositional changes associ-
ated with later 20th-century land use practices includ-
ing widespread grazing, logging, and fire suppression
(Safford and Stevens 2017), supporting their use as ref-
erence conditions for forest restoration. The large spa-
tial coverage (10,000–50,000-ha landscapes) and
quantitative detail (i.e., individual tree sizes, species) of
these inventories allowed these studies to characterize
the range of forest conditions that existed historically
robustly (Hagmann et al. 2018). Furthermore, because
the inventories were tied to the Public Land Survey
System, the spatial locations of individual plots are
known, which allows for analyses of potential edaphic
and climatic influences on variability in forest condi-
tions across large landscapes (Collins et al. 2015, Ste-
phens et al. 2018). However, the historical inventory
data are not without limitations. Given the timber
focus of the surveys, there were inconsistencies among
survey areas on how nonmerchantable attributes were
recorded. Specifically, dead trees and noncommercial
tree species may have been ignored, and the minimum
tree size considered to be merchantable was variable.
These inconsistencies are difficult to reconcile because
it is impossible to know whether these attributes were
present at the time of the survey but omitted, or they
were largely absent from these historical landscapes.
Some early transect-based forest inventories from the
Sierra Nevada included trees >15 cm diameter at
breast height (DBH) (Collins et al. 2015, Stephens
et al. 2018), and found that the number of trees in this
smaller size class was similar to that in the immediate
larger size class. Another method to reconstruct forest
structure uses General Land Office (GLO) density esti-
mators and has the advantage of including oaks but has
a problem of undefined minimum tree diameters (Knight
et al. 2020). Unfortunately, these same attributes (dead,
noncommercial species, and small trees) may also be
underrepresented in dendrochronology-based forest

reconstructions because such materials could have
decomposed long ago. Even with these limitations, these
early forest inventories can provide important informa-
tion for managers and scientists interested in understand-
ing variability in landscape-scale forest structure before
logging and fire suppression.
In this study we make use of another recently “discov-

ered” archive containing extensive information from a
timber survey conducted in the southern Cascade Range
of California. This historical timber survey is unique
from those used in previous studies for several reasons.
First, it is the only large-spatial-extent (>10,000 ha) sur-
vey that we are aware of for this region. Second, it is
based on a highly intensive sampling effort for such a
large-scale survey. Ritchie (2016) presented historical
information from an intensive forest survey also in the
southern Cascade Range, but the spatial scale was lim-
ited to approximately 4,000 ha. Lastly, the survey from
which we analyzed data was conducted almost entirely
on privately owned forestland, much of which remains in
private holding to this day. Our specific objectives with
this study were (1) to describe the range of historical for-
est conditions across the survey area and compare that
to contemporary forest conditions, (2) to investigate the
influence of biophysical factors on observed variability
in historical and contemporary forest conditions, and (3)
to predict historical forest conditions across a large spa-
tial domain using modeled relationships with biophysical
variables. Our broader goal through these objectives is
to leverage this spatially detailed and highly quantitative
historical data set to inform large-scale forest restoration
efforts across ownerships.

METHODS

Study area

The historical timber inventory data span the upper
portions of three eight-digit Hydrologic Unit Code
watersheds in northern California (Fig. 1). Most of this
inventory was conducted in the southern Cascade
Range, with a small portion extending into the northern
Sierra Nevada. Mean elevation for inventoried areas is
1,557 m and mean annual precipitation is 1,240 mm.
Based on climate data from 1981 to 2010, mean mini-
mum January temperature was �3.9°C, and mean maxi-
mum July temperature was 27.3°C (Flint et al. 2013).
The majority of the inventoried area is lower montane
mixed-conifer forest which is dominated by the following
tree species: ponderosa pine (Pinus ponderosa),
sugar pine (P. lambertiana), white fir (Abies concolor),
incense-cedar (Calocedrus decurrens), and Douglas fir
(Pseudotsuga menziesii) (North et al. 2016). Red fir (A.
magnifica), generally considered an upper montane spe-
cies, made up approximately 2% of the historical species
composition. Prior to 1905 low- to moderate-severity
fire was common in this area, with median fire return
intervals of 12–14 yr (Skinner and Taylor 2018).
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Historical inventory data

The historical forest inventory within our study area
was conducted in 1924 (Fig. 2) and was located system-
atically based on the Public Land Survey System
(PLSS). It is worth noting that there likely was a lag
between the timing of this survey and the last fire
recorded in tree ring-based fire history reconstructions.
However, we submit this lag did not have a strong influ-
ence on the data given the minimum diameter of trees
included and the time it would take for trees to reach
that diameter (Lydersen et al. 2013). Except for a small
portion that was censused (<1%), the inventory consisted
of individual samples containing four parallel belt tran-
sects, 40.2 m wide by 402 m long, run through quarter-
quarter sections (QQs; 16.2 ha or 40 acre survey units).
Cumulatively these transects covered 40% of each sur-
veyed QQ. Although not explicitly stated in the accom-
panying documentation, the survey appears to have been
limited to trees >30.5 cm (12 in.) DBH, presumably the

merchantability threshold at the time. This general
method for locating transects and inventorying trees is
consistent with other historical timber surveys that used
the PLSS for sample locations and belt transects to sam-
ple individual trees (e.g., Hagmann et al. [2013], Collins
et al. [2015], Stephens et al. [2015]), although some sur-
veys had a smaller minimum DBH for recorded trees.
Similarly, the lack of hardwood tree species, primarily
California black oak (Quercus kelloggii) in the study
area, suggests that this survey was limited to conifers,
which is also consistent with other historical timber sur-
veys. Dead trees were recorded, but only if they appeared
to have merchantable volume. The specific criteria guid-
ing this determination of what was merchantable was
not provided; hence our analyses only focused on live
trees.
The archived data sheets from this survey were

included in a report prepared by Brown and Brown, Inc.
for Curtis, Collins & Holbrook Company, owner of the
surveyed timberland in 1924. The report was made

FIG. 1. Locations and overall extent of a historical timber inventory conducted in 1924. This inventory was based on the Public
Land Survey System, with individual quarter-quarter sections (pink) being the observational unit for sampling. The inset shows
broader region with eight-digit Hydrologic Unit Code watersheds (gray) and the search extent from which contemporary inventory
data were gathered (black square outline).
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available to us by Collins Pine Company, current owner
of the surveyed timberland, via high-resolution scanned
images. Introductory material in the report indicated
that no prior logging had occurred in the surveyed areas.
The data sheets contain summaries of the transect tallies
by species, for a given QQ (Appendix S1: Fig. S1). Addi-
tionally, the data sheets contain written descriptions of
the timber quality for each species present, along with
general site characteristics. The report contained inven-
tory data for 1,552 QQs, which were largely concentrated
in the 14 contiguous PLSS townships (Fig. 1). However,
there were 71 QQs scattered across seven additional
townships further south, which were not adjacent to the
main group of townships. Given the much lower propor-
tion of sampled QQs in these southern townships and
the fact that they were geographically disjunct, we opted
to remove those 71 QQs from the analyses, leaving 1,481
QQs in our historical data set. These 1,481 QQs make
up 23,992 ha of sampled area within a larger study area
(defined by a convex hull polygon) of 52,206 ha.
Because the sampled area within an individual QQ was
40% of the QQ, there was an effective sampling propor-
tion across the larger study area of 19%.

Our analyses were based on two key attributes
reported in the historical datasheets, number of trees
and average tree diameter (Appendix S1: Fig. S1). These
were reported by species for each QQ, and the number
of trees was scaled to represent the total for the entire
QQ (� 16.2 ha). We converted this to trees per hectare
(TPH) based on the reported area of each QQ
(Appendix S1: Fig. S1). Average tree diameter was
reported as stump diameter, which we adjusted to DBH
using the taper equations from Wensel and Olson (1995).

Contemporary forest inventory data

The bounding area for which we assessed contempo-
rary forest conditions is approximately 788,000 ha cen-
tered primarily on western Plumas County (Fig. 1). This
is considerably larger than the historical timber survey
area, but it was necessary given the much lower sampling
density in our contemporary data set. We used plot-level
data from Forest Inventory and Analysis program (FIA)
to characterize contemporary forest conditions. Because
FIA inventories are conducted on 10-yr rotations, we
identified FIA plots that were surveyed between 2011

FIG. 2. Photographs taken as part of historical timber inventory conducted in 1924. These photographs were from a report pre-
pared by Brown and Brown, Inc. for Curtis, Collins & Holbrook Company, owner of the surveyed timberland. The captions accom-
panying these photographs in the report were: Left—“An example of small tapering clean-bodied old growth [ponderosa] pine.
Clean-bodied or free from limbs for 90 feet.” Right—“Fine quality [s]ugar pine 77 inches in diameter in the bark. White fir in the
background.” Note people standing in front of large trees in both photos. Images reproduced with permission from Collins Pine
Company.
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and 2018 that fell within the bounding area (n = 274).
We then conducted a series of filtering exercises, follow-
ing the methods of Stephens et al. (2018), to select plots
that would serve as an appropriate comparison to our
historical data. This included selecting plots within the
elevation range of the historical data (1,113–1,923 m;
n = 204) and removing plots where the reported eleva-
tion was markedly different than what was extracted
from a digital elevation model based on publicly avail-
able plot coordinates, which are “fuzzed” within approxi-
mately 0.8 km of the true plot location (Woudenberg
et al. 2010). To account for this fuzzing of coordinates,
we only retained plots that were within 150 m of eleva-
tion discrepancy (n = 182). We then selected plots
recorded with one “condition” only, indicating that the
entirety of the plot could be described as having similar
ages, species composition, and disturbance history
(n = 110). We also removed an additional 29 plots
because of a history of recent fire activity (n = 81), and 1
plot where stand age was recorded as zero (only seed-
lings present; n = 80). Because the historical timber sur-
vey data did not contain hardwoods, we also excluded
three plots where the dominant vegetation was catego-
rized as California black oak, and one plot categorized
as tanoak (Notholithocarpus densiflorus; n = 76). We
also excluded hardwoods from all estimates of tree den-
sity and basal area. We further removed plots with <9-
m2/ha basal area, which may be considered nonforested
by FIA for a variety of reasons, for example, recent tim-
ber harvest or other severe disturbance, which follows
the approach from Stephens et al. (2018). This filtering
approach left us with 71 plots in our final contemporary
data set for analyses.
To make historical and contemporary data sets com-

parable, we excluded QQs that also contained <9 m2/ha
basal area (n = 102), totaling 1379 QQs in our final his-
torical data set. Although this may bias our results
against historical conditions that facilitated low basal
area, we wanted to be consistent with the plot character-
istics we used to filter our FIA data. We also only
counted trees at least 30.5 cm DBH in our estimates to
match the assumed DBH cut-off for historical invento-
ries. Because our sampled FIA plots covered a wider
geographic range than our historical data, we extracted
ecological system codes from LANDFIRE’s biophysical
settings data set (LANDFIRE 2020) to assess whether
the variability in locations would bias the forest condi-
tions we estimated. Ecological systems are part of a clas-
sification scheme that incorporates regional distribution,
vegetation physiognomy and composition, and environ-
mental setting to describe the natural range of variation
in plant communities (Comer et al. 2003). Based on
extracted data, we found that both data sets exhibited
the same ecological systems and had similar distribu-
tions in their representation across sites regardless of
location (Appendix S1: Table S1). This suggests that the
FIA plots we selected serve as appropriate comparison
to our QQ data, despite the disparity in sample size.

For both the 1,379 lots in the final historical data set
and the 71 plots in the final modern FIA data set, we
extracted underlying climate and topographic data. A
digital elevation model was acquired from the U.S. Geo-
logical Survey National Elevation Data Set7 at 1/3 arc-
second (8 9 10 m) resolution and converted to corre-
sponding slope and aspect layers using QGIS. We con-
verted aspect to a categorical variable with breakpoints
at 135° and 315° to correspond to northeast-facing and
southwest-facing slopes. Climate data were acquired
from the Basin Characterization Model data set (Flint
et al. 2013) for the same geographic footprint at 270-m
resolution. Climate variables included 30-yr mean values
from 1981 to 2010 for maximum temperature (annual
and June), climatic water deficit (annual and June),
actual evapotranspiration, April 1 snowpack, and
annual precipitation. For spatial predictive models, all
data were scaled and aligned at 270-m resolution.

Data analysis

An initial set of all seven climatic variables, elevation,
slope, and aspect was considered to explain the variation
in historical forest conditions including TPH and pine
fraction (calculated as the live basal area of Pinus spp.
divided by the total live basal area of a given plot). We
calculated basal area by multiplying TPH by the
adjusted average stump diameter (explained previously).
This calculation of basal area is only possible if we
assume the reported average diameter is actually the
quadratic mean diameter, which we do assume given its
relationship with the reported volumes. Given the indi-
rect nature of the basal area estimate, along with its high
correlation with TPH (Pearson’s r = 0.84) we opted not
to analyze it statistically. Multicollinearity amongst
explanatory variables was reduced by removing variables
with a Pearson’s correlation coefficient >0.7 (Appendix S1:
Fig. S2). This threshold resulted in a final candidate set of
five variables, including maximum annual temperature,
slope, aspect, annual climatic water deficit, and annual pre-
cipitation. Although we also evaluated higher and lower
thresholds of correlation to test the number of parameters
included in our models, we did not find any substantial
improvements to our final models.
We then input our reduced number of predictor vari-

ables into a random forest model using the randomForest
package in R (Liaw and Wiener 2002, R Development
Core Team 2020) to predict which variables were the
most important in explaining historical forest condi-
tions. Random forest is a machine learning algorithm
that aggregates bootstrapped estimates of multiple deci-
sion trees, which leads to greater accuracy and lower
error rates relative to traditional linear regression mod-
els (Povak et al. 2014). Similar to methods established
by Povak et al. (2014), we started with all five predictor
variables in the same random forest model for each

7 https://viewer.nationalmap.gov/
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forest condition. Based on the percentage increase in
mean standard error, we removed the least important
variable from each model and re-ran random forest. We
repeated this process until only two variables remained
in each model. We selected the best-performing model
predicting each forest condition based on the greatest
percentage of variation explained and lowest root mean
standard error (Appendix S1: Fig. S3). The variables
contained within these models were used as inputs in a
regression tree analysis using the rpart package in R
(Therneau and Atkinson 2019) to identify important
thresholds in those variables that are associated with the
different mean values of historical forest conditions. We
used an ANOVA method for splitting variables and a
complexity parameter of 0.02 (the increase in R2 value at
each split that must occur for the split to be accepted).
For the pine fraction response variable, we used a com-
plexity parameter of 0.03 to avoid an overly complex
regression tree.
To compare how TPH and pine fraction may differ

between historical and modern forests given the same
environmental conditions, we used the breakpoints iden-
tified by the regression tree analysis of our historical
data and aggregated the modern FIA data set according
to those thresholds. We then estimated the mean values
of each forest structure variable within that environmen-
tal space. Finally, we estimated historical TPH and pine
fraction at a landscape scale by applying the best ran-
dom forest model predicting each structure to a 270-m
resolution raster data set containing each model’s asso-
ciated climatic and topographic variables. To avoid
extrapolating beyond the range of the sampled environ-
mental space, we excluded any topographic or climatic
values that were not within the environmental envelope
of the historical data set, as was done by Stephens et al.
(2018).

RESULTS

Mean historical density of trees >30-cm DBH in this
study area was 44.6 trees/ha and mean basal area was
16.5 m2/ha (Table 1). For all historical forest structure
metrics, mean annual maximum temperature, slope,
mean annual climatic water deficit, and mean annual
precipitation were predictor variables in the top random
forest models. Regression tree analysis of TPH in 1924
suggests a strong influence of mean annual maximum
temperature, mean annual precipitation, and mean
annual climatic water deficit (Fig. 3). Temperature was
the primary driver of density. Sites with annual maxi-
mum temperatures warmer than 15°C had higher aver-
age densities (42–51 trees/ha) than colder sites (37 trees/
ha). Among warmer sites, the driest sites (annual precip-
itation < 1,019 mm) limited average tree density to
42 trees/ha. Although we observed greater average TPH
in wetter sites (precipitation > 1,019 mm), tree density
was also limited (� 44 trees/ha) on the wettest sites
when annual precipitation was >1,179 mm and climatic

water deficit was <517 mm. The highest densities (� 49–
51 trees/ha) were observed within intermediate levels of
wetness when precipitation was >1,179 mm and climatic
water deficit was >517 mm or precipitation was between
1,019 and 1,179 mm.
Based on breakpoints established in the regression tree

analysis of historical TPH, modern forests had approxi-
mately 350% higher average TPH than historical forests
across all environmental conditions (Table 1, Fig. 3).
Unlike the historical data set, colder (annual maximum
temperature <15°C) and wetter (annual precipitation
>1,179 mm and annual climatic water deficit <517 mm)
sites had the highest modern tree densities, � 170 and
� 181 trees/ha, respectively. Although the driest sites
(annual precipitation <1,019 mm) generally had lower
modern tree density (� 141 trees/ha), unlike the histori-
cal data set, they did not contain the lowest densities
among the warmer sites. Rather, sites that had greater
precipitation combined with greater climatic water defi-
cit showed the lowest densities (� 136 trees/ha). Other
sites with intermediate levels of wetness (precipitation
between 1,019 and 1,179 mm) showed intermediate
levels of tree density (� 166 trees/ha).
The historical forest condition was strongly character-

ized as pine-dominated forests (average pine frac-
tion = 0.64; Table 1). Regression tree analysis
demonstrated that regardless of environmental condi-
tion, historical pine fraction was ≥0.53 (Fig. 4). Unlike
the other regression tree analyses, all variables were
shown as strong drivers of historical pine fraction. In
sites where slope was low (<10%), drier sites with precipi-
tation <1,497 mm had 23% higher pine fraction (� 0.71)
than sites where precipitation was >1,497 mm (� 0.55).
When slope was steeper (>10%), pine fraction was com-
parable on warmer (maximum temperature >15°C) sites
and colder (<15°C), less drought-stressed (climatic water
deficit <476 mm) sites, � 0.53 vs. � 0.56, respectively.

TABLE 1. Summary of mean (interquartile range) historical
and contemporary forest structure and environmental data
used in random forest modeling and regression tree analysis.

Forest structure
and data 1924 2011–2018

Trees/ha 44.6 (36.7–52.0) 160 (109–209)
Live basal area
(m2/ha)

16.5 (13.7–18.9) 34.7 (18.1–47.0)

Pine fraction 0.64 (0.53–0.75) 0.33 (0.09–0.47)
Elevation (m) 1,557 (1,459–1,654) 1,603 (1,447–1,756)
Max annual
temperature (°C)

15.4 (14.8–16.0) 15.6 (14.4–16.6)

Annual climatic
water deficit (mm)

499 (470–534) 527 (485–586)

Annual
precipitation (mm)

1,240 (1,034–1,440) 1,382 (972–1,878)

Slope (%) 11.1 (6.2–15.5) 12.4 (5.8–17.3)

Note: Environmental data were averaged using long-term
values from 1981 to 2010.
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Colder sites with temperature <15°C had a higher pine
fraction (� 0.70) when coupled with higher drought
stress (climatic water deficit >476 mm).
Pine dominance shifted dramatically in modern for-

ests, with our regression tree analysis on FIA data
indicating that pine fraction diminished even under the
same environmental conditions as our historical data
set (Fig. 4). Unlike the historical data set, low slopes
were not pine dominated, with wetter sites (precipita-
tion >1,497 mm) showing the lowest levels of pine
fraction (� 0.13). Drier sites with precipitation
<1,497 mm had higher pine fraction (� 0.38), but were
still 46% lower than historical pine fraction under the
same conditions. This trend was consistent in sites with
steeper slopes (>10%). Although the warmest sites
where maximum temperature was >15°C were similar
to historical forests in that they showed lower pine
fraction (� 0.20) relative to the other environmental
conditions, these sites were still 62% lower than histor-
ical forests. Although colder (maximum temperature
<15°C) and less drought-stressed (climatic water deficit
<476 mm) sites showed higher levels of pine fraction
(� 0.46), the highest levels of pine fraction (� 0.56)
were apparent in colder sites with higher drought stress
(climatic water deficit >467 mm).
Based on maps generated from our best-fit random

forest models predicting tree density (Fig. 5) and pine
fraction (Fig. 6), there were considerable patterns in

forest structure across the historical landscape. Higher
tree densities appeared to concentrate at the southern
portion of the study area, and lower tree densities were
more apparent in the northern portion, where maximum
high temperatures were more likely to be below 15°C,
including several higher plateaus and ranges southeast
of Lassen Volcanic National Park (data not shown). Our
maps showed that pines dominated the historical land-
scape, with the highest portions concentrated in the
northern region of our study area. The spatial distribu-
tion of pine also aligned with the distribution of tree
density, with a linear regression detecting a negative rela-
tionship between tree density and pine fraction
(Appendix S1: Fig. S4; P < 0.001).

DISCUSSION

Past management and climate change are impacting
forests across western North America with increasing
high-severity fire, possibly leading to conversion to non-
forest vegetation (Coop et al. 2020). Such fundamental
changes to forests will impact their carbon sequestration,
wildlife habitat, ascetics, and hydrology. Forests adapted
to infrequent, high-severity fire regimes are more suscep-
tible to climate-induced changes because there are few
management actions that can be undertaken to conserve
these forests (Westerling et al. 2011, Stephens et al.
2014). However, forests adapted to frequent, low–

FIG. 3. Regression tree output explaining the influence of biophysical variables on tree density (trees per hectare [TPH] >30.5-
cm diameter at breast height). Colored boxes at the ends of the regression tree branches contain mean TPH and number of observa-
tions in each resulting group, for the historical (H) and contemporary (C) inventory data sets. The colors correspond to different
TPH values in the respective histograms. CWD = climatic water deficit.
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moderate intensity fire regimes can be managed to
increase their resiliency (Hurteau et al. 2016, Liang
et al. 2018), but a key challenge is identifying conditions
that confer landscape-level resilience.
The historical landscape-level forest condition in the

privately owned portion of the southern Cascade Range
we studied fit the classic model of frequent-fire forests:
large trees (mean pine DBH 76 cm), low mean density
(44.6 trees/ha; 16.5 m2/ha basal area), and pine-
dominated (Table 1, Fig. 2). Among comparable studies
with historical timber survey data, our overall average
tree density and basal area estimates fell within the range
of averages reported for other pine-dominated mixed-
conifer forests in the southern Sierra Nevada (35.7 trees/
ha, 16.1 m2/ha from Collins et al. [2015; adjusted to
only trees >30.5 cm DBH]; 54.5 trees/ha, 21.9 m2/ha
from Stephens et al. [2015]). Our overall average basal
area estimate, for which lower tree DBH cutoffs would
have much less influence, was also similar to those
reported further north in the Cascade Range (14–21 m2/
ha [Hagmann et al. 2013, 2014, 2017, Ritchie 2016]).
However, despite having similar average forest structural
characteristics, our large historical landscape may be
unique in that it exhibited much lower overall variability
in forest structure relative to these other studies. This is
evident in the narrow interquartile ranges for historical
tree density and pine fraction (Table 1), which almost
mirror the range in group means resulting from the
regression trees explaining both variables (Figs. 3, 4).

The relatively low overall variability is somewhat sur-
prising, given the large overall extent and depth of the
timber inventory data (52,206 ha sampled at 19%;
Fig. 1), but may be partly attributable to less topo-
graphic relief (and associated climatic variability) in
this region compared to other areas of the Sierra
Nevada.
Despite having relatively low overall variability in his-

torical forest structure and composition, our analyses
revealed evidence of biophysical controls on tree density
and pine fraction (Figs. 3, 4). Annual climatic variables
most strongly explained the range in historical tree den-
sities, whereas historical pine fraction was explained by
a combination of topographic and climatic variables.
These general relationships mirrored those reported in
Stephens et al. (2018), which was conducted in an
upper-elevation mixed-conifer forest in the north-central
Sierra Nevada. However, there were some differences in
the specific variables identified. For example, the highest
historical tree densities from Stephens et al. (2018)
occurred in areas with moderate to high precipitation
but with intermediate annual snowpack, whereas the
highest densities in our study occurred in areas with
average or higher mean annual temperature but with
moderate precipitation (Fig. 3). Similarly, the greatest
pine fraction from Stephens et al. (2018) occurred in
lower-elevation areas with higher annual climatic water
deficit, whereas our study found that the greatest pine
fraction occurred in areas with flatter slope gradients

FIG. 4. Regression tree output explaining the influence of biophysical variables on pine fraction (basal area of Pinus spp.
divided by total live basal area of a given plot). Colored boxes at the ends of the regression tree branches contain mean pine fraction
and number of observations in each resulting group, for the historical (H) and contemporary (C) inventory data sets. The colors
correspond with different pine fraction values in the respective histograms. CWD = climatic water deficit.

Article e02400; page 8 BRANDONM. COLLINS ET AL.
Ecological Applications

Vol. 0, No. 0

MGMT 4(c)



and higher, but not extremely high, precipitation (note
the 1,497-mm annual precipitation identified in Fig. 4 is
greater than the 75th percentile value reported in
Table 1). These discrepancies make it difficult to distill
common drivers of variability across these two distinct
study areas, yet clearly the biophysical environment
exerted some control in both areas. Biophysical drivers
of landscape-level variability in historical forest structure
and composition have also been identified in other fre-
quent fire-adapted forests (Maxwell et al. 2014, Collins
et al. 2015). It is noteworthy that the expression of the

biophysical environment existed despite long-term expo-
sure to frequent fire (Hessburg et al. 2015).
The much higher tree densities and lower proportions

of pine in contemporary forests relative to historical
conditions agrees with many other investigations of for-
est change in frequent fire-adapted forests (e.g., Moore
et al. [2004], Brown et al. [2008], Scholl and Taylor
[2010], Knapp et al. [2013], Taylor et al. [2014]). These
changes were evident across all biophysical divisions
identified in the regression tree analysis (Figs. 3, 4).
Along with these overall changes, contemporary forests

FIG. 5. Model prediction of historical landscape variation in tree density (trees per hectare [TPH] >30.5-cm diameter at breast
height). Predictions were generated from best-fit random forest model using the historical data set. Predictors included means of
maximum annual temperature, annual climatic water deficit, annual precipitation, and slope. Predictions were only made within the
environmental envelope of the historical data set (sampled quarter-quarter sections [QQs]) and scaled to 270-m resolution.
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exhibited a far greater range in conditions than what
existed historically. This was apparent in the very differ-
ent distributions of tree density and pine fraction
depicted by the respective histograms (Figs. 3, 4). Man-
agement history undoubtedly explains some of the varia-
tion observed in the contemporary forests; in particular
harvesting coupled with fire suppression and exclusion
(Collins et al. 2017). Much of the study area remains in
private ownership, managed for timber growth and yield
with single tree selection regeneration methods in order
to develop multiaged structures. Hence a complex forest

structure is an intentional product of the silvicultural
methods being used. Although fire suppression has typi-
cally been considered to have a homogenizing effect on
forest structure in western U.S. forests (e.g., Jones et al.
[2018], Ziegler et al. [2021]), decades of multiaged silvi-
culture in this case may have restored complexity to the
point that structure is more variable than it was during a
period with frequent fire. Another contributing factor
could be that the effect of biophysical factors, which col-
lectively influence forest structure and composition, is
muted by frequent fire. In other words, productivity

FIG. 6. Model prediction of historical landscape variation in pine fraction (calculated as the live basal area of Pinus spp. divided
by total live basal area of the plot). Predictions were generated from best-fit random forest model using the historical data set. Pre-
dictors included means of maximum annual temperature, annual climatic water deficit, annual precipitation, and slope. Predictions
were only made within the environmental envelope of the historical data set (sampled quarter-quarter sections [QQs]) and scaled to
270-m resolution.
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gradients can be more fully expressed when fire has been
removed for decades (Merschel et al. 2014). Investigat-
ing this hypothesis will likely require a more robust data
set for characterizing contemporary forest conditions
(i.e., remeasurement rather than FIA), as well as an abil-
ity to control for management history.
Our findings and associated inferences should be tem-

pered by the understanding that our data sets and analy-
ses are not without limitations. Our use of FIA plot data
to quantify contemporary forest conditions makes for a
fairly coarse characterization of forest change. Although
a similar approach has been used in several previous stud-
ies (Hagmann et al. 2013, 2014, 2017, Stephens et al.
2015, 2017, 2018), the comparisons are imperfect. In our
case we had very different sample sizes, 1,379 historical
observations vs. 71 contemporary observations. This sug-
gests that we have unequal representations of actual vari-
ability in the two time periods. However, the fact that we
observed a greater range in contemporary forest condi-
tions despite having a much smaller sample size some-
what counters this concern. Although the variability we
observed may be a product of the wider geographic range
of the FIA plots we sampled or slight differences in envi-
ronmental conditions (Table 1), similar biophysical envi-
ronments between the contemporary and historical data
sets (Supplemental Material: Table S1) suggest that smal-
ler sample of FIA plots we used were still an appropriate
comparison to our historical data. However, we acknowl-
edge utilizing FIA data to substitute for a lackof repeated
measures in our QQ sites is an imperfect design and that
our assessment of forest change in this area should be
interpreted as general shifts in forest conditions rather
than a specific quantification of change.
The depth and extent of our historical data allowed us

to model variability in historical forest conditions across
a large landscape, extending well beyond the sampled
areas (Figs. 5, 6). Despite not projecting a large range in
historical tree density or pine fraction, these models
demonstrate a north–south gradient across our larger
study area, with lower pine dominance and greater tree
densities in southern portion (Fig. 5). Given that these
model projections are based on output from our random
forest analysis, these projections likely track biophysical
gradients that indicate generally greater productivity in
the southern half of study area. Finer-scale gradients
exist as well, which are presumably tied to the interacting
effects of topography and climate.
The depth and extent of the historical data set is the

primary strength of this study, but these data are not
without their own limitations. First, the archived records
we obtainedwere summaries of data collected on individ-
ual transects for a given QQ. As a result, we lacked indi-
vidual tree measurements, which affected our ability to
generate forest structure metrics such as basal area or tree
diameter distributions. Second, the lower-diameter cutoff
for inclusion in our QQ summaries was 30.5 cm (12 in.)
DBH. This censors our characterization of historical
(and contemporary) forest conditions towards that of the

mid- and overstory, which also could influence the rela-
tively low variability we observed throughout our study
area. However, Stephens et al. (2015) had the same lower
DBH cutoff, yet they demonstrated fairly high variability
throughout a smaller study area. Third, the lack of infor-
mation on hardwood tree species, as mentioned previ-
ously, causes questions as to whether they were present,
but omitted in the survey, or present, but below the 30.5-
cm DBH cutoff for recording. Based on a similar data set
collected 140 km away in similar forest type during a sim-
ilar time period (1923), where only 17% of lots contained
any individuals of the most common hardwood, Califor-
nia black oak (Quercus kelloggii), >15.2 cm DBH, and
where the average fraction of plot basal area inQ. kellog-
giiwas 1.7% (Stephens et al. 2018), we do not believe that
the inclusion of Q. kelloggii (or other hardwoods) would
have appreciably affected our results. Lastly, the decision
not to include historical data from QQs with live basal
area <9 m2/ha, which was done to match the excluded
“nonforested” areas as defined by FIA, limits our charac-
terization of landscape-level variability. These areas with
low live overstory cover can be quite important for main-
taining high biodiversity (White et al. 2015). These limi-
tations further emphasize that all historical forest
reconstructions, including this one, are incomplete (e.g.,
Collins et al. [2018], Levine et al. [2019]). That said, these
large-scale historical timber surveys are a robust source
of quantitative data that require very few assumptions to
generate forest structure and composition metrics (Hag-
mann et al. 2018).

MANAGEMENT IMPLICATIONS

The forest management regime in much of our study
area for several decades has been characterized by peri-
odic single tree selection harvests, designed to create a
diversity of age and size structures for sustaining long-
term timber yield. Although selective practices in this
forest type risks high-grading that have led to declines in
productivity (York 2015), the single-tree selection meth-
ods on these lands were designed to focus on improving
growth and yield. Although large trees are periodically
harvested when they show signs of productivity loss,
they are not removed when reaching a predetermined
diameter. Many large trees are therefore retained. Like-
wise, the historical fire regime also sustained a diversity
of size and age structures (Safford and Stevens 2017)
that retained larger trees albeit determined by fire resis-
tance and not economic factors. Thus, although the dis-
turbance regime of frequent fires has been replaced with
a regime of frequent selection harvests, the general mul-
tiaged structure has been maintained. Uneven-aged silvi-
culture systems would presumably be relatively well
aligned with the natural disturbance regime (Seymour
et al. 2002, Long 2009). However, our findings describ-
ing a past forest structure characterized by particularly
low tree density, large pine fraction, large tree size, and
low basal area compared to contemporary forests even
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when they are periodically harvested. Modifications to
cutting cycles, stocking targets, and planting methods
could be incorporated into prescriptions if an even closer
alignment with historical structures is desired.
Despite periodic reductions in basal areas from har-

vesting, current levels of stocking are still roughly twice
as high (Table 1) as when harvesting practices first
started. This demonstrates that private forestland man-
aged with multiaged silviculture may be quite similar to
public forestlandwith respect to departure in forest struc-
ture and compositions from that of historical forests.
Had harvests not occurred, basal area would likely be
even higher and could still be increasing linearly where
wildfire suppression was effective (Levine et al. 2016,
Collins et al. 2017). Silvicultural regimes that maintain
stocking levels that are higher than those maintained by
frequent fire are a logical outcome of managing for tim-
ber as an objective because higher stocking, to an extent,
equates to higher growth and yield. A commonality
across studies that use historical ecological information is
that historical basal areas are much lower than what sites
are capable of when applying relative stocking indices
(Long and Shaw 2012). This points to a misalignment
between the objectives of managing for timber produc-
tion versus maintaining low-density forests consistent
with the historical condition we demonstrated. This is
not a new dilemma in forests adapted to frequent fire
(Show and Kotok 1924). To reduce basal areas to the
levels that are suggested by this and other studies would
likely compromise a timber objective. For example, har-
vesting to an average residual basal area level of 16.5 m2/
ha found in this study would fail to comply with the mini-
mum stocking standards on productive private land in
California (California Forest Practice Rules [CFPR]
2020). A challenge for multiaged silvicultural systems
that attempt to achieve both timber and restoration
objectives will be finding appropriate stocking levels that
are high enough to achieve acceptable timber yield and
low enough to reflect past densities, which demonstrated
greater resistance and resilience to fire and drought (Saf-
ford and Stevens 2017). A further challenge will be updat-
ing forest practice regulations to accommodate lower
stocking standards where restoration objectives are a
goal. Future research into the implications for timber
management of silviculture regimes that are even more
aligned with past fire regimes is a needed area of applied
study, especially considering the wealth of reconstruction
studies that are now available for use in establishing
postharvest structures.
The decrease in pine fraction that we found here is

also in common with other studies using historical eco-
logical information. Gap-based silviculture that reduces
surface fuels (York et al. 2012) can create conditions for
natural regeneration of ponderosa pine. And harvesting
to create distinct canopy gaps followed by planting can
allow for rapid growth of ponderosa pine that is similar
to even-aged systems (York et al. 2007). Retention of
large pine trees is also an important component of

adapting silvicultural regimes if the objective is to
restore historical structures.
Efforts to restore forest structures to conditions simi-

lar to those in place when they were influenced by fre-
quent fires need not differ across ownerships if resilience
is a management goal (Stephens et al. 2021). This is not
to suggest that forest restoration objectives are uni-
formly desired, or that restoration prescriptions can be
uniformly applied. As our results support, local factors
are important in guiding forest restoration. Biophysical
and management variability can both create structural
heterogeneity. As an example, the lack of a larger range
in tree density and pine fraction, relative to other study
areas with similar historical data (e.g., Collins et al.
[2015], Stephens et al. [2018], Hagmann et al. [2019]),
might result in a narrower set of restoration prescrip-
tions. Regardless of the level of historical variability in a
given landscape, the maps we generated for the modeled
historical densities and pine fractions could be used to
“assign” different prescriptions across a project area.
This would certainly introduce some complexity in
implementation, but given the connection between vari-
ability and forest resilience (North et al. [2009], Koontz
et al. [2020]), it may be worth pursuing.
This research, when combined with other landscape-

level forest reconstructions in the Sierra Nevada (Collins
et al. 2017, Stephens et al. 2015, 2018), points to much
lower density forests with some differences in tree basal
area. In pine mixed-conifer forests, historical basal area
was one-half or lower than contemporary forests (Col-
lins et al. 2017, Stephens et al. 2015, this work) but in
areas that were fir mixed-conifer forests, basal area was
largely unchanged between historical and contemporary
conditions (Stephens et al. 2018). This further empha-
sizes that restoration programs will not be uniform, but
we have the knowledge to move forward today to
increase forest resilience and adaptive capacity to fire,
bark beetles, and climate change.
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