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Preface 

Chapter 2: Effect of burn severity on rill network formation and sediment yield in the 
inland Coast Range, California, USA 

Research and field data gathering were done in collaboration with Drew Coe and 
Don Lindsay of the California Department of Forestry and Fire Protection and Joe 
Wagenbrenner of Michigan Tech and the USDA Forest Service, with the exception of rill 
measurements that were made by Will Olsen. Research questions and data analysis were 
developed by Will Olsen with assistance from Joe Wagenbrenner. 

Chapter 3: Effect of post-fire salvage logging on rill network formation and sediment 
yields 

Research and field data were gathered in collaboration with the USDA Forest 
Service Rocky Mountain Research Station (Moscow, ID), USDA Forest Service Pacific 
Southwest Research Station (Riverside, CA), Joe Wagenbrenner and Iskender Demirtas 
(Michigan Tech). Research questions, data analysis, and writing were developed by Will 
Olsen with assistance from Joe Wagenbrenner. 

Chapter 2 and 3 will both be prepared and submitted to a peer-reviewed journal at a 
future time. 
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Thesis Abstract 

Wildfires can increase soil erosion by orders of magnitude over rates in unburned 
forests and negatively impact aquatic resources. Rill erosion is a dominant erosion and 
sediment transport mechanism in burned forests, and hydrologically connected rills can 
form networks on burned hillslopes. At the swale scale (< 10,000 m2), little is known 
about how rill networks develop under different burn severities over time, their 
relationship with sediment yields, and the effect of post-fire salvage logging on rill 
networks and sediment yields. 

The first study assessed rill networks and sediment yields in three burn severities 
in the inland Coast Range of California, USA, after the 2015 Valley Fire. The results 
indicated the rill networks in high burn severity areas reached nearly the entire extent of 
the burned hillslopes. Rill densities in high burn severity areas were significantly higher 
(19-23 cm m-2) than low and moderate severity areas (0.5-2.1 cm m-2). Sediment yields 
from high burn severity areas (13-15 Mg ha-1) were significantly higher than the low to 
moderate burn severity areas (0.1-3.4 Mg ha-1), and highly correlated with rill density (r2 

= 0.97). Results indicate that the extensive rill networks in high burn severity areas can 
greatly increase connectivity, resulting in increased sediment delivery downslope. 

The second study assessed the effects of post-fire salvage logging on soil bulk 
density, field saturated hydraulic conductivity, ground cover, rill networks and sediment 
yields in the central California Sierra Nevada following the 2013 Rim Fire. Post-fire 
logging resulted in 9-56% percent soil disturbance, which was dominated by high traffic 
skid trails (9-29%). Feller buncher tracks averaged 2% of swale areas, while mixed traffic 
areas averaged 7% and were only found in five of nine logged swales. Within high traffic 
logging disturbance soil bulk density was increased, field saturated hydraulic 
conductivity reduced, and bare soil increased. When scaled up to the swale scale, logging 
had no significant effect on ground cover, but did result in significantly higher wood 
cover relative to unlogged swales. High traffic skid trails typically initiated extensive rill 
networks, with up to 20 cm m-2 sourced from skid trails. Rills in skid trails were typically 
concentrated at waterbars and directed downslope, where they often connected to the 
outlet. Control swales had 4-18 rills from untrafficked areas, and logged swales had 0-15 
rills from untrafficked areas and 1-12 rills from disturbed areas. As with the ground 
cover, rill densities in logged and unlogged swales were not significantly different. Mean 
annual sediment yields in logged and unlogged swales were not significantly different, 
and the high input of wood cover from logging did not have a significant effect on rill 
density or sediment yield. In unlogged and logged swales, both rill density and sediment 
yield appeared to be reduced by large areas of undisturbed ground with high surface 
roughness, which disconnected rills from the stream network. To reduce rill connectivity 
and sediment delivery from logging disturbance, land managers should optimize skid trail 
layouts to reduce the spatial footprint of skid trails, increase ground cover on skid trails 
and below waterbar outlets, and retain buffers with high ground cover between logging 
disturbance and ephemeral channels. 
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Chapter 1: Introduction 

In the western United States historic forest management and fire suppression, in 

conjunction with a changing climate, have led to increasingly frequent wildfires since the 

1980’s (Flannigan et al., 2000, Westerling et al., 2006, Littell et al., 2009). Within the 

forested regions of central and northern California, high fuel loads, extended periods of 

high temperatures, and decreased precipitation have produced a significant increase in 

stand-replacing wildfires, with increased estimates for the size and occurrence of future 

severe wildfires (Fried et al., 2004, Westerling and Bryant, 2008, Miller et al., 2009, 

Westerling et al., 2011). 

Following severe wildfires in forested landscapes, soil water repellency and other 

changes to soil properties can reduce infiltration rates and increase the rate and frequency 

of runoff in burned areas (Robichaud, 2000, Martin and Moody, 2001, Robichaud et al., 

2016). The loss of ground cover following severe wildfires can be a dominant factor for 

elevated soil erosion rates at the hillslope scale (Benavides-Solorio and MacDonald, 

2001, Larsen et al., 2009, Robichaud et al., 2016). At the catchment and basin scale, 

runoff and sediment delivery to downstream networks can increase significantly, posing a 

threat to downstream aquatic resources, particularly after extensive high severity 

wildfires (Helvey, 1980, Ice et al., 2004, Moody and Martin, 2009, Moody et al., 2013, 

Stone et al., 2014, Bladon et al., 2014). Increases in wildfire activity and precipitation 

intensities due to climate change within regions of the western US may lead to 

detrimental sediment issues within burned mountainous watersheds (Gould et al., 2016). 

Rill erosion occurs when overland runoff is concentrated and incision occurs, 

creating small channels typically several centimeters in depth. Rills transport eroded 

sediment downslope, and may be persistent features on the landscape. Rill erosion in 

recently burned forests can be a dominant sediment source and transport mechanism 

(Pietraszek, 2006, Moody et al., 2013). Robichaud et al. (2010) found sediment flux rates 

during simulated rill experiments in high burn severity areas were on the same order of 

magnitude as erosion rates in recently tilled agricultural fields, and significantly higher 

than erosion rates in undisturbed forests. 
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Mitigation techniques to reduce post-fire erosion rates have been shown to have 

varying levels of effectiveness. Contour barriers such as felled logs, straw wattles, and 

trenches may reduce erosion rates for smaller rainfall events, but typically fail during 

larger high intensity rainfall events (Robichaud et al., 2008a, Robichaud et al., 2008b). 

The application of mulch such as wood strand or wheat straw can reduce erosion and 

runoff rates significantly (Wagenbrenner et al., 2006, Robichaud et al., 2013a, Robichaud 

et al., 2013b). The harvest of burned trees or “salvage logging” is another post-fire 

management tool. Salvage logging is typically undertaken to achieve economic goals in 

addition to land management goals such as future fuel reduction and reforestation. Post-

fire salvage logging has also been cited as a tool to reduce post-fire soil erosion, through 

the breakup of water repellant soil layers by machinery and the increase in ground cover 

due to logging slash (Poff 1989, McIver and Starr, 2001). 

Salvage logging can be a controversial management practice following a wildfire, 

particularly on public lands. Concerns include the potential loss of landscape scale 

benefits imparted by the disturbance of wildfires (Lindemayer et al., 2004) and negative 

impacts to biodiversity and some ecosystem services (Lindenmayer and Noss, 2006). In 

post-fire salvage logging, removal of large wood from the forest structure can negatively 

impact bird populations dependent on burned forests (McIver and Starr, 2001, Beschta et 

al., 2004), and ground based harvesting systems may reduce forest regeneration (Donato 

et al., 2006). Of special concern is the impact of post-fire salvage logging on aquatic 

systems and watersheds, in particular when ground based retrieval systems are used. Karr 

et al. (2004) summarized potential impacts to include damage to recovering soils, 

increased runoff and sedimentation of rivers and streams, impacts to aquatic species, and 

the introduction of new road systems in forested areas. Extensive road systems are often 

needed in order to haul harvested trees from a forest via log trucks, however roads are 

also significant sediment sources within forests (Luce and Black, 1999, MacDonald et al., 

2004). A 2001 review of existing studies on the effects of salvage logging on erosion, 

McIver and Starr found a wide range of results that indicated logging after fires may 

increase, decrease, or have no detectable impact on soil erosion. 
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The following two studies address gaps in understanding how rill networks evolve 

under different soil burn severities (“burn severity”), the relationship between rill erosion 

and sediment yields, how salvage logging affects soil and ground cover properties, and 

salvage logging effects on the formation of rill networks on burned hillslopes. We studied 

the effects of wildfire in the inland Coast Range of California, USA, and logging in 

recently burned areas in the central Sierra Nevada of California, USA. 
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Chapter 2: The effect of burn severity on rill network formation and 

sediment yield in the inland Coast Range, California, USA1 

2.1 Background 

Changes in vegetation and soil properties following wildfire can act as a significant 

driver to alter hydrologic aspects of a burned landscape (Shakesby and Doerr, 2006). 

Wildfire models based on climate change predictions have indicated a significant 

increase in wildfire size, occurrence, and severity in northern California, including in 

mixed conifer forests common to the inland Coast Range of California (Fried et al., 

2004). 

Following high burn severity wildfires, simulated rill experiments indicated that 

wildfire can elevate the erodibility of forest soils by one to two orders of magnitude 

relative to unburned forest soils (Wagenbrenner et al., 2010). 60-80% of sediment yields 

were accounted for by rill erosion in the Colorado Front Range, with bare soil as a 

dominant explanatory variable in annual sediment yields (Pietraszek, 2006). Rills have 

been identified as a fundamental feature in drainage networks on hillslopes following 

wildfires, with rill networks characterized as either parallel rills draining downslope, or 

three to six converging rills above a channel head (Moody and Kinner, 2006). On small 

16.8 m2 unburned plots, rill networks formed during simulated rainfall and reached a 

steady state after as little as 8% of total rainfall was applied, and persisted throughout the 

simulation (Bennett et al., 2015). 

The expected increase in wildfire extent and severity in California may have critical 

implications for rill erosion and sediment yields in burned watersheds. MacDonald and 

Coe (2007) indicated the importance of headwater rills and channels in the transport of 

fine sediments downstream and throughout watersheds. However, little is known about 

how rill networks form over time within various burn severities in headwater catchments. 

The study objectives were to assess: 

1 Chapter 2 will be prepared and submitted to a peer reviewed journal in the future 
10
 



 
 

              

  

            

     

   

              

           

           

               

       

          

            

           

        

           

    

               

           

            

   

               

           

               

             

              

                

             

•	 The development of rill networks in different burn severities in the first year 

following wildfire 

•	 The relationship between rill erosion and sediment yield in small catchments 

burned at varying severity 

2.2 Site description 

The Valley Fire started 12 September 2015 in the inland Coast Range of northern 

California and burned 30,783 ha, including portions of the Boggs Mountain 

Demonstration State Forest (“BMDSF”) (Figure 2.1). Six areas of convergent hillslopes 

(“swales”) of 0.15-0.65 ha were chosen with two swales in each class of low, medium, 

and high burn severity (Table 2.1). 

Precipitation at BMDSF averages 1,650 mm annually (California Department of 

Forestry and Fire Protection, 2008) and vegetation is described as a Mediterranean 

California dry-mesic mixed conifer forest and woodland, with ponderosa pine (Pinus 

ponderosa), sugar pine (Pinus lambertiana), Douglas-fir (Pseudotsuga menziesii), 

manzanita (Arctostaphylos spp.), and oak (Quercus spp.) (US Geological Survey Gap 

Analysis Program (GAP), 2011). 

At BMDSF, swale outlets ranged from 812 to 960 m in elevation. Soil families are 

the Collayomi, Aiken, and Whispering family, weathered from andesite parent material. 

Soils are gravelly to very gravelly loam (Soil Survey Staff, 2016). 

2.3 Field methods 

Two swales were chosen in each class of low, moderate, and high burn severity based 

on USDA Forest Service Burned Area Reflectance Classification (BARC) maps (USDA, 

2016) and field observations (Parsons et al., 2010). All six swales were characterized by 

varying degrees of converging hillslopes with a centralized channel leading to the outlet. 

Silt fences (adopted from Robichaud and Brown, 2002) were installed at the outlet of 

each swale in October 2015 (Figure 2.2). Swale slopes were derived from a 1 m digital 

elevation model created from airborne LiDAR data flown in 2016 by the Federal 
11
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Emergency Management Agency, and the mean, minimum, and maximum slopes within 

each swale were calculated in ArcMap (ESRI, Redlands, CA). 

Post-fire ground cover was characterized in the swales using three transects of 

varying lengths (adopted from Evans and Love, 1957) in November 2015. Cover types 

were recorded at 0.25 m, 0.5 m, or 1.0 m intervals to achieve approximately 100 points 

per transect. Cover types were classified as bare soil, gravel (5-75 mm diameter), rock 

(>75 mm diameter), live vegetation, litter (pine needles, dead leaves, wood < 5mm), and 

wood (> 5mm diameter). Bare soil and gravel were combined to a single category. The 

percentages were averaged across all three transects for a single value for each swale. 

Precipitation was recorded at the top of swale 5 using a tipping bucket rain gage 

(Rainwise Inc., Trenton, ME) coupled to a HOBO data logger (Onset Computer 

Corporation, Bourne, MA). The rain gage was installed November 2015. Precipitation 

events were separated by six hours of no rainfall for each event, and the total 

precipitation accumulation, duration, and maximum 10 minute, 30 minute, and 60 minute 

rainfall intensities (I10, I30, and I60, respectively) were calculated for each event. 

Rills and channels (Figure 2.2) were mapped in each swale in January 2016 and again 

in May 2016. From the outlet of each swale, each rill was followed with a mapping grade 

GPS in “track” mode to either the junction of the next upslope rill or its initiation point. 

All intersecting rills were followed to their initiation point. Drainage features where 

hillslopes converged to a single flow path and flow width was at least 20 cm wide were 

considered channels, and ended where hillslopes were no longer convergent or the 

channel transitioned to rills. Channels were mapped to their upslope terminus. If a rill 

diverged into two or more rills at least 1 m apart over a length of at least 1 m, each rill 

was mapped separately. When multiple short rills less than 1 m in length formed and 

connected dendritically along a singular path less than 1 m wide and over 1 m long, the 

path was mapped and treated as a single rill. Rills not connected to the outlet were 

mapped when their length exceed 5 m. Rill drainage density, or “rill density”, was 

calculated by summing the lengths of rills connected to the outlet and dividing the total 

by the contributing area. The channel density was calculated in the same way, and the 
12
 



 
 

                 

                

       

             

               

                

           

                 

             

                 

               

                

                

            

   

               

              

              

               

              

              

            

                

              

     

              

               

               

sum of rill and channel densities was used for the total drainage density. The rill length to 

the outlet was measured in ArcMap from the rill’s initiation point to the swale outlet via 

connecting rills or channel flow paths. 

Sediment was removed from the silt fences three times after installation. All six 

fences were cleaned out in March 2016 and June 2016. The moderate and high severity 

swale fences were also cleaned out in April 2016 when the fences were at risk of 

overtopping. Small sediment accumulations were removed and brought to the laboratory. 

For larger amounts, sediment was weighed in the field and a sub sample was taken to the 

laboratory, including eroded sediment that reached the fence but was deposited on the 

hillslope directly in front of the fence. In the laboratory the sub samples were dried for 24 

hours at 105 °C to determine water content. The field mass of sediment was then 

converted to a dry mass, which was divided by the contributing area to give a sediment 

yield for each swale. Sediment yields from all three clean outs were combined to give a 

cumulative value for the period of October 2015 to June 2016. 

2.4 Statistical methods 

All statistical analysis was done in the R software (R Core Team, 2016) using a 

significance level of 0.05. Linear mixed effects models were used to assess differences in 

rill density among burn severity over the two survey dates. Mixed models were built 

utilizing the lme4 package (Bates et al., 2014) with swale as a random effect. Fixed 

effects were burn severity and survey date measured as the number days since fire 

ignition and converted to a yearly timescale. Rill densities in the mixed model were 

square root transformed to normalize residuals. The lstrends function from the lsmeans 

package (Lenth, 2016) was used to compare the change in rill density over time for each 

burn severity using an interaction between severity and time, with a Tukey adjustment for 

multiple comparisons. 

Simple linear regression models were built to assess the differences in bare soil, 

litter, wood, and rock cover, mean swale slope, number of rills, total rill length, rill 

density, and sediment yields by burn severity. Both the January and May values for the 

13
 



 
 

               

             

       

            

               

              

       

          

            

         

  

 

              

                

               

               

               

              

               

             

               

            

 

           

            

            

               

number of rills, total rill length, and rill densities were compared by burn severity. The 

lsmeans package was used to compare mean values between burn severities, with a 

Tukey adjustment for multiple comparisons. 

Separate simple linear regression models were used to assess the relationship between 

the dependent variables of sediment yield and the May rill density, and each of the 

independent variables bare soil, litter, wood, and rock cover, number of rills, total rill 

length, channel density, and mean slope. 

Model assumptions, including normality and homogeneity of variance of the 

residuals, were assessed by quantile-quantile plots and by plotting the residuals against 

predicted values (Winters, 2013). The models met the assumptions. 

2.5 Results 

Cover 

Bare soil increased with burn severity, from the minimum mean of 49% in low 

severity, to 58% in moderate severity, to 81% in high severity (Figure 2.3). There was no 

vegetation measured in any of the swales, and the ground cover was dominated by litter, 

regardless of burn severity. However, litter cover accounted for a mean of 41 and 35% 

cover in low and moderate burn severity swales, compared to 14% in high burn severity 

swales. Rock and wood both were minimal components of ground cover across all three 

burn severities; in low, moderate, and high burn severity rock was 9, 4, and 4%, 

respectively, while wood was 2, 3, and 2%, respectively. There were no significant 

differences across burn severities for either bare soil or any of the cover categories (Table 

2.2). Individual swale ground cover data are available in Appendix A. 

Precipitation 

Precipitation from November 2015 through June 2016 totaled 1,551 mm. The 

majority of precipitation occurred during the winter months of November through March, 

with approximately 70% of the precipitation occurring in January and March 2016 

(Figure 2.4). 513 mm of precipitation fell during January in 13 separate rain events, with 
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a maximum I60 of 13 mm hr-1, I30 of 14 mm hr-1, and I10 of 15 mm hr-1 with 63 mm of 

precipitation (Figure 2.5). During March, 571 mm of precipitation was recorded in 8 

separate rain events, with a maximum I60 of 23 mm hr-1, I30 of 27 mm hr-1, and I10 of 37 

mm hr-1 with 245 mm of precipitation (Figure 2.5). Complete event precipitation data are 

available in Appendix B. 

Rills 

Rill networks formed in five of the six swales by the January 2016 survey date, and in 

all six swales by May 2016. The low burn severity swale 1 was the only site with no rills 

in January 2016, and also had the highest post-fire ground cover. Rill density generally 

increased across the burn severity gradient and over time (Figure 2.6). The rills typically 

formed on bare hillslopes and connected downslope to the outlet via a channel. From 

January to May, the rill density in the two low severity swales, swale 1 and 2, increased 

slightly from 0.0 to 1.0 cm m-2 and 0.4 to 0.5 cm m-2, respectively. The moderate severity 

swale 3 increased from 1.0 to 2.1 cm m-2, and the rill network formed within the lower 

portion of the swale on bare hillslopes (Figure 2.7). Swale 6, which also burned at 

moderate severity, had a slight decrease in rill density, from 1.8 cm m-2 to 1.0 cm m-2 . 

Increased litter from needle cast was observed between the two survey dates, and may 

have reduced rilling, caused in-rill deposition, or hidden some rills. The high severity 

swales, 4 and 5, increased from 3.8 to 23 cm m-2 and 5.1 to 19 cm m-2, respectively. The 

rills in high burn severity swales reached nearly the entire extent of the contributing areas 

by May 2016 (Figure 2.7). Individual rill measurements are available in Appendix C. 

There was no significant difference in mean rill density between low and moderate 

severity swales in either survey date; however for each date the mean rill densities in both 

burn severities were significantly lower than the high severity swale means (Table 2.2). 

From January to May there was no significant changes in rill density between the low and 

moderate severity swales (p = 0.57). However, the rill density in high burn severity 

swales increased at a significantly greater rate than the low (p = 0.04) and moderate (p = 

0.02) severity swales from January to May. In January there was no significant different 

in the number of rills between severities, but by May the high and low severity swales 
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were significantly different (p = 0.048). Additionally, the total rill length was 

significantly different between high and low severity swales in January, however by May 

there were no significant differences in total rill lengths among severities. The channel 

densities showed slight increases between the two survey dates, however there were no 

significant differences either between surveys or among the burn severities. 

The regression model indicated that the number of rills, total rill length, percent bare 

ground, and percent litter cover were significant predictors of rill density (Table 2.2). Rill 

density increased by 0.66 cm m-2 for each contributing rill (r2 = 0.91). The regression 

slope for litter cover was -0.63 (r2 = 0.76) and 0.57 cm m-2 for bare ground (r2 = 0.80). 

Wood and rock cover had a negative correlation with rill density, however the effects 

were not significant. Mean slope had no significant effect on rill density. 

Sediment 

The mean sediment yields were 0.63 Mg ha-1 in the low severity swales, 2.1 Mg ha-1 

in the moderate severity swales, and 14 Mg ha-1 in the high severity swales (Figure 2.8). 

There was no significant difference in mean sediment yield between the low and 

moderate burn severity swales, but both burn severities produced less sediment than the 

high severity swales. Following the March precipitation events, the moderate and high 

severity fences were cleaned out; the cleanouts represented 61-89% of the annual yield in 

the moderate severity swales, and 65-78% in the high severity swales. Sediment yields by 

clean out date are available in Appendix D. 

Sediment yield had significant correlation with bare ground and litter cover, along 

with the number of rills and rill density (Table 2.2). Bare ground explained 92% of the 

variance in sediment yields with a slope of 0.41, while litter explained 88% of the 

variance with a slope of -0.45. While wood and rock decreased sediment yield in the 

model, both were not significant effects. Channel density was not a significant predictor 

of sediment yield (p = 0.6, r2 = 0.07). The number of contributing rills explained 85% of 

the variance in sediment yields (p = 0.008), while the total rill length explained 84% of 

the variance (p = 0.01), however the residual error for each variable was high (2.90 and 
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3.07, respectively). Rill density explained 97% of the variance in sediment yields, and 

was the most significant predictor (p = 0.0004), with the lowest residual standard error 

(1.38). 

2.6 Discussion 

The result that rill density explained approximately 97% of the variance in sediment 

yields partially corroborates Pietraszek’s (2006) estimate that 60-80% of eroded sediment 

in burned areas is sourced from rills. The high level of correlation between rill density 

and sediment yield indicates that rill erosion is a dominant sediment transport mechanism 

on burned hillslopes, accounting for a majority of sediment yields within our swales. 

Moody and Martin (2009) used a synthesis of post-fire sediment yields to illustrate that as 

spatial scale increased from hillslope (1-1000 m2) to catchment (100-10,000 ha), 

sediment yields increased when channel processes dominated, and approximately 75% of 

sediment was sourced from channels. Our study did not find a significant correlation 

between channel density and sediment yield, but we also recognize that the ephemeral 

channels within the swales at BMDSF were relatively small and also relatively short. 

This study indicates that as spatial scale decreases to the swale scale seen at BMDSF, 

hillslope rill erosion is a more dominant process than channel erosion in the first year 

following wildfire. At the small headwater catchment scale channels may have less 

runoff volume and available sediment than at the large catchment scale in Moody and 

Martin’s (2009) study. Instead, rill erosion accounts for the majority of sediment yields, 

while channels act as a connecting feature to the outlet. 

There may be different processes occurring within ephemeral channels such as those 

found in the BMDSF swales relative to within rills; rills on steep slopes may become 

source limited over time (Wagenbrenner et al., 2010), while channels, which can store 

sediment, can be transport limited and deliver only some available sediment. High 

intensity precipitation may remove or reduce the transport limitation, allowing greater 

sediment delivery (Blake et al., 2009). At BMDSF, the interacting effects of wildfire and 

high intensity precipitation events (such as those observed during March 2016) may have 
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worked to “flush” sediment sourced from hillslopes and stored in channels to the swale 

outlet at a later time. 

Within the low to moderate burn severity swales, the increased surface roughness 

from greater ground cover may have caused deposition on the hillslopes, as has been 

demonstrated in rill networks on unburned slopes (Gomez et al., 2003). Previous research 

has shown that needle cast from Douglas-fir and ponderosa pine, two species present at 

BMDSF, can significantly reduce erosion following wildfires (Pannkuk and Robichaud, 

2003). The high rates of litter cover in the low and moderate severity swales consisted 

mostly of needles, which supports the role of post-fire needle cast in reducing soil 

erosion. However, the ground cover in the high severity swales, despite being largely 

litter, only averaged 19%. Harrison et al. (2016) indicated that significant reductions in 

sediment yield in burned areas occurred at 25% ground cover or more. 

In high burn severity areas, individual rills connect downslope and runoff 

accumulates, leading to increased energy capable of eroding more sediment downslope. 

The increased connectivity in the high burn severity areas allowed eroded sediment from 

both the mid and upper slopes to be delivered to the channels, in addition to sediment 

available from the lower slopes, elevating sediment yields. 

In Bennett et al.’s (2015) controlled rill experiments, rill networks had reached a 

steady state following between 8-26% of the total applied rainfall. At the time of the 

January rill survey, cumulative post-fire rainfall was 22% of the amount for the first post-

fire year. By the May survey, approximately 99% of the first-year rainfall had been 

recorded, and rill densities in the high severity swales had increased significantly more 

than the low and moderate severity swales. During the month of March, the rainfall that 

fell in eight separate events was 37% of the total rainfall. 16% of the rainfall occurred in 

one storm (March 3-7), with a maximum I60 of 23 mm hr-1. During the month of March 

65-78% of the annual sediment yield in the high severity swales was measured. High 

intensity precipitation events likely influence rill networks in all swales and burn 

severities more so than overall annual rainfall, which likely also holds true for sediment 

yields. However, the response of rill networks and sediment yields in high burn severity 
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swales to intense rain events was likely much greater than in lower burn severities. 

Management to mitigate post-fire erosion rates in headwater catchments, when resources 

are limited, should focus on severely burned areas due to the sensitivity of these areas to 

high intensity rain events and the greater potential sediment delivery. 

Rills in burned forests have elevated runoff and sediment flux rates compared to 

unburned forests (Robichaud et al., 2010), and sediment flux rates in rills can be limited 

by soil availability (Wagenbrenner et al., 2010), which can be highest at the soil surface 

(Nyman et al., 2013). The initial erosion rates observed at BMDSF are likely highly 

influenced in part by the high sediment availability at the soil surface following the 

wildfire, particularly in the high severity swales that had extensive exposed bare soil. 

The rill densities and sediment yields in our high severity swales were an order of 

magnitude higher than the low-moderate severity swales. Assuming the unburned 

hillslopes would have even lower rates of rilling and sediment delivery (Moody and 

Martin, 2009), the high severity burn areas would produce orders of magnitude greater 

rill densities and sediment yields than unburned catchments. While post-fire erosion is a 

natural process, erosion rates that are magnitudes higher than unburned forests, at such 

large spatial scales, could pose a threat to downstream resources and infrastructure. Our 

study indicated that rill density responded to bare soil and litter cover at a relatively equal 

rate (slopes of 0.57 and -0.63, respectively), and sediment yields responded to bare soil 

and litter cover in a similar fashion (slopes of 0.41 and -0.45, respectively). In terms of 

management, this study indicates that mitigation techniques that increase post-fire ground 

cover should reduce both rill development and sediment yields, corroborating previous 

research (Wagenbrenner et al., 2006, Robichaud et al., 2013a, Robichaud et al., 2013b). 

2.7 Conclusion 

Very little is known about post-fire erosion rates in the inland Coast Range of 

California, and how rills networks develop on hillslopes burned at varying intensities. 

Rills can be a dominant soil erosion and sediment transport mechanism in burned forests, 

and connect hillslopes to ephemeral channels and stream networks. Following the 2015 
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Valley Fire in the inland Coast Range of California, we measured rill density and 

sediment yields in six swales with varying burn severities. Approximately 1,551 mm of 

precipitation was recorded in the first year after the fire, and most of this occurred 

between November and March, including several large, high intensity precipitation 

events during March. Rill densities and sediment yields were significantly correlated to 

bare ground, while increases in litter cover significantly reduced rilling and sediment 

yields. Ground cover decreased with burn severity, and litter cover was higher in 

moderate and low severity swales. This resulted in significantly higher average rill 

densities in high burn severity swales (21 cm m-2) as compared to swales of low or 

moderate severity (0.8 cm m-2 and 1.6 cm m-2, respectively). Rill density in high severity 

swales increased more between survey dates than low to moderate severity swales. Rill 

density and sediment yield were highly correlated. From these results and previous 

studies we infer that rill density is an important hillslope surface sediment transport 

mechanism in burned forests in the Coast Range, and that both rill density and sediment 

yields are highly dependent on burn severity. 
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2.8 Tables and Figures 

Table 2.1: Study swale characteristics at BMDSF within the Valley Fire area, including 
burn severity, mean, minimum, and maximum slope, and contributing area. 

Swale Burn severity Mean slope and Area (ha)
 
range (%)
 

Swale 1 Low 37 (20-57) 0.26 

Swale 2 Low 43 (25-59) 0.15 

Swale 3 Moderate 27 (13-50) 0.65 

Swale 4 High 35 (14-69) 0.29 

Swale 5 High 36 (8-76) 0.18 

Swale 6 Moderate 37 (7-68) 0.20 
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Table 2.2: Statistical results. A) Variable differences between mean values by burn 
severity. Range shown in parentheses, and different superscripts in each row indicate 
significantly different means. B) Regression summaries for sediment yield and rill density 
and single independent variables. 
A 
Variable High severity Moderate severity Low severity 
Bare ground (%) 81(78-84) A 58(50-66) A 49(45-53) A 

Litter (%) 14(13-14) A 35(29-41) A 41(33-49) A 

Wood (%) 1.6(1.5-1.6) A 3.4(3-3.8) A 1.6(1-2.2) A 

Rock (%) 3.9(1.6-6.1) A 3.6(0.6-6.6) A 8.9(5.6-12) A 

Mean slope (%) 36(35-36) A 32(27-37) A 40(37-43) A 

Rill length (m) (Jan) 102(91-113) A 60(35-67) AB 3(0-6) B 

Rill length (m) (May) 503(343-663) A 77(21-134) A 17(8-27) A 

Rill count (Jan) 8(7-9) A 6(4-8) A 1(0-1) A 

Rill count (May) 31(23-38) A 7(3-11) AB 1(1) B 

Rill density (cm m-2) (Jan) 4.5(3.8-5.1) A 1.4(1.0-1.8) B 0.2(0-0.4) B 

Rill density (cm m-2) (May) 21(19-23) A 1.6(1.0-2.1) B 0.8(0.5-1.0) B 

Yield (Mg ha-1) 14(13-15) A 2.1(0.8-3.4) B 0.63(0.05-1.2) B 

B 

Variable P value Slope 
coefficient r2 Residual

standard error 
Rill Density (cm m-2) (May) 
Bare ground (%) 0.02 0.57 0.8 5.2 
Litter (%) 0.02 -0.63 0.76 5.6 
Wood (%) 0.4 -4.1 0.18 10.4 
Rock (%) 0.5 -0.9 0.12 10.8 
Mean slope (%) 0.84 -0.22 0.01 11.5 
Number of rills 0.003 0.66 0.91 3.41 
Channel density (cm m-2) 
Sediment Yield (Mg ha-1) 

0.70 2.3 0.04 11.4 

Bare Ground (%) 0.003 0.41 0.92 2.2 
Litter (%) 0.006 -0.45 0.88 2.66 
Wood (%) 0.56 -1.94 0.09 7.23 
Rock (%) 0.43 -0.67 0.16 6.95 
Mean slope (%) 
Channel density (cm m-2) 

0.96 
0.61 

-0.04 
2.0 

0 
0.07 

7.59 
7.31 

Number of rills 0.008 0.42 0.85 2.90 
Rill length (m) 
Rill density (cm m-2) 

0.01 
0.0004 

0.02 
0.65 

0.84 
0.97 

3.07 
1.38 
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Figure 2.1: Valley Fire and location of BMDSF within the burned area. Lower panel 
shows swale locations within BMDSF. Burn severity is from the USDA Forest Service 
burned area reflectance classification data (USDA, 2016). 
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A 

B C 

Figure 2.2: Photos of a partially filled silt fence following rainfall (A), 
rill erosion (B), and an ephemeral channel (C). Arrows indicate 
downslope direction. 
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Figure 2.3: Ground cover at BMDSF, November 2015, approximately one month post-
fire. “Low”, “Moderate”, and “High” refer to burn severity in each swale. Litter was 
the dominant cover type, and ground cover decreased with increasing burn 
severity.100% minus the total ground cover is the amount of bare ground. 
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Figure 2.4: Rainfall at the top of swale 5 at BMDSF. Panel A is monthly cumulative 
rainfall, panel B shows the daily rainfall throughout the year. Only trace rainfall 
amounts occurred between 1 October and gage installation on 14 November 2015. 
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Figure 2.5: 60-minute maximum rainfall intensity (I60) by rainfall event (top) and 
cumulative rainfall by event (bottom) at BMDSF. Only trace rainfall amounts occurred 
between 1 October and gage installation on 14 November 2015. 
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Figure 2.6: Rill and channel densities by swale number and burn severity at BMDSF for 
each survey date. 
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Figure 2.7: Rill networks in BMDSF swales in January 2016 (Left) and May 2016 
(Right). Scale in each map is 1:1300. 
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Figure 2.8: Sediment yields by swale and burn severity at BMDSF from October 2015 to 
June 2016. No additional sediment was produced through September 2016. 
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Chapter 3: Effect of post-fire salvage logging on rill network formation 

and sediment yields2 

3.1 Background 

Post-fire salvage logging presents a special concern in regards to potential 

impacts to watersheds and aquatic environments (Karr et al., 2004). In a review of 

research on the effects of salvage logging on erosion, the use of ground-based harvesting 

techniques was identified as the most likely to have detrimental effects (McIver and Starr, 

2001). Ground based harvesting techniques typically involve the use of tracked feller 

bunchers to cut and bunch trees, and wheeled or tracked skidders to drag or “skid” whole 

trees to a central area for processing and loading onto log trucks for transport to sawmills 

for processing (Figure 3.1). Routes used by skidders to retrieve trees are typically 

referred to as “skid trails”. 

Salvage logging techniques can be an important factor in determining soil 

disturbance. The use of skyline yarding, which elevates one end of the log off the soil 

surface, led to minimal soil disturbance in an Oregon study (Slesak et al., 2015). The 

disturbance from ground based logging equipment during salvage operations can be 

extensive, with high spatial variation of mechanical disturbance within and among 

catchments (Chou et al., 1994). Cable suspension and ground based harvesting methods 

resulted in significantly higher soil disturbance than helicopter based logging in the 

California Sierra Nevada, and bare soil from salvage activity was indicated as a direct 

factor for elevated sediment yields (Chase, 2006). During ground based salvage of burned 

areas in Oregon, increasing intensities of tree removal were found to correspond to 

increased mechanical soil disturbance (McIver and McNeil, 2006). 

Extensive soil disturbance from salvage logging does not always correlate to 

elevated sediment yields. Chou et al. (1994) indicated the difficulty in differentiating 

erosion from fire effects and logging effects in their California study. Low post-salvage 

rainfall amounts and intensities, coupled with hand felling of trees, skidding over snow, 

2 Chapter 3 will be prepared and submitted to a peer reviewed journal in the future 
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and low to moderate erosion risk soils, led to minimal sediment transport in burned and 

logged areas in Oregon (McIver and McNeil, 2006). Slesak et al. (2015) noted that 

elevated sediment yields were more likely due to coupled effects of herbicide-based 

vegetation control and mechanical site preparation, in conjunction with high intensity rain 

events, rather than salvage logging alone. Site to site variability resulted in insignificant 

differences in sediment yields between helicopter, cable, and tractor based salvage 

techniques in California (Chase, 2006). A study comparing burned and burned and 

logged catchments in Arizona indicated that salvage logging had no discernible effect on 

sediment yields, which were tied more closely to bare soil and slope (Stabenow et al., 

2006). In northwestern Spain, the combination of salvage logging and application of 

mulch after wildfire reduced sediment yields at the plot scale relative to both logged and 

unlogged plots that were not mulched (Fernandez and Vega, 2016). 

Salvage logging has been identified as a potential tool to reduce post-fire soil 

erosion rates through the application of logging slash to cover bare ground and by 

breaking up water repellant layers (Poff, 1989). This study indicated the careful planning, 

management, and monitoring involved were key to protecting watersheds within the 

burned area. Soil disturbance from logging equipment can break up soil water repellant 

layers (Wagenbrenner, 2015) and increase surface roughness (Poff, 1989), which was 

indicated as a factor in reducing post-fire sediment yields at the catchment scale in one 

study (James, 2014). James’s study (2014) also indicated the subsequent contour ripping 

of soils reduced spatial connectivity and sediment delivery to catchment outlets. 

During simulated rill experiments in burned and trafficked areas in Oregon and 

Washington, the maximum sediment flux rate occurred within skid trails, however there 

was no difference in sediment flux between skid trails and plots with high soil burn 

severity (Robichaud et al., 2010). Robichaud et al.’s (2010) study also documented the 

increased soil erodibility in recently burned forests and subsequent disturbance from 

skidding. Across several fires in the western US, the type of logging equipment and 

amount of traffic did not significantly alter sediment fluxes, and trafficked plots produced 

sediment flux rates several orders of magnitude higher than unlogged plots in simulated 

rill experiments (Wagenbrenner et al., 2016). The latter study also indicated decreased 
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infiltration rates in skidder plots as a critical factor for elevated sediment flux rates, and 

this negative effect overrode the reduction in water repellency caused by the traffic 

(Wagenbrenner et al., 2016). 

Spatial layout and hydrologic connectivity of logging disturbance may be a 

critical factor in determining erosion rates. In the Rocky Mountain region of Alberta, 

Canada, sediment transport pathways to downstream aquatic systems were created by 

disturbance features from logging activity in burned forests that were not observed in 

burned-only watersheds (Silins et al., 2009). A 2014 study from the same Alberta, 

Canada wildfire used a geochemical fingerprinting method to determine sediment 

sources, finding that both burned and burned and logged watersheds had persistently high 

sediment inputs in the years following fire (Stone et al., 2014). In several different burned 

areas in the western US, sediment yields from skid trails at the hillslope scale were found 

to be significantly elevated relative to burned and unlogged control plots (Wagenbrenner 

et al., 2015). Wagenbrenner et al.’s (2015) study also found that sediment yields between 

logged and unlogged areas at the larger catchment scale were dependent upon both site 

and location; sediment yields corresponded strongly to rainfall intensity and bare soil, 

with the layout and connectivity of skid trails critical aspects in determining the effect of 

post-fire logging. 

Determining the sediment sources and connectivity of disturbance from ground 

based tractor harvesting to stream networks in burned and logged areas will greatly 

improve our ability to understand, predict and mitigate erosion from post-fire logging. 

The objectives of this study were to: 

•	 Assess the impacts of post-fire salvage logging on soil bulk density, field 

saturated hydraulic conductivity rates, and ground cover; 

•	 Identify where rills initiate in burned and burned and logged catchments; 

•	 Assess the impact of post-fire salvage logging on the connectivity of rills across 

burned hillslopes to the stream network; 

•	 Assess the relationships between sediment yields and rill networks, post-fire 

logging disturbance, and ground cover. 
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3.2 Site description 

The Rim Fire started 17 August 2013 in the western side of the central Sierra 

Nevada in California and burned 103,773 ha, including 62,536 ha of the Stanislaus 

National Forest (Figure 3.2). Fourteen swales of 0.09 – 0.81 ha were chosen across three 

timber harvest units within the Rim Fire burned area in the Stanislaus National Forest. 

Swale outlets ranged from 1,170 m to 1,447 m in elevation, and the mean slope of swales 

ranged from 15-27% (Table 3.1). Seven swales were chosen within the “Triple A” sale, 

and seven swales were chosen within the “Femmons” sale, which consisted of two units, 

Lower and Upper Femmons, with four and three swales each, respectively. 

The 1981-2010 annual average precipitation for Triple A was 937 mm (Mather 

rain gage, Western Regional Climate Center, 2016). For Femmons, precipitation at the 

nearby Cherry Valley Dam rain gage (37.975 N, -119.916 W) averaged 1,283 mm 

annually from 1981-2010 (Western Regional Climate Center, 2016). Vegetation in swales 

was described as a Mediterranean California dry-mesic mixed conifer forest and 

woodland (US Geological Survey Gap Analysis Program (GAP), 2011). Tree species 

were a mixture of ponderosa pine (Pinus ponderosa), incense cedar (Calocedrus 

decurrens), sugar pine (Pinus lambertiana), Douglas-fir (Pseudotsuga menziesii), and 

oak (Quercus spp.). Manzanita (Arctostaphylos spp.) species were also found 

interspersed within the study area, particularly in the Upper Femmons unit (US 

Geological Survey Gap Analysis Program (GAP), 2011). 

Soils were Holland family, with a loam surface over sandy clay loam weathered 

from granitic parent material with 3-10% rock (Soil Survey Staff, 2016). A portion of the 

swale FSW 11 in Lower Femmons was a Holland-McCarthy complex, consisting of loam 

over sandy clay loam and gravelly sandy loam over sandy loam, weathered from tuff and 

paralithic parent material. The three high elevation swales in Upper Femmons had soils 

of the Josephine and Sites families, weathered from paralithic parent material. These soils 

were classified as gravelly loam over clay loam or clay, and 10-30% rock. 
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The prevalence of manzanita, rockier soils, and much lower impact of logging 

operations in Upper Femmons led us to separate it from the Lower Femmons unit for all 

analysis, despite being within the same timber sale boundary. 

Swale treatments were burned and unlogged (“control”), and burned and logged 

(“logged”) (Figure 3.3, Table 3.1). Five of seven swales in Triple A were logged during 

November to December 2014; three of four swales in Lower Femmons were logged in 

May 2015; and one of three swales in Upper Femmons was logged in September 2015 

(Table 3.1). Feller bunchers were used to cut trees, except for large trees, which were 

hand felled. Cut trees were skidded to landings by rubber-tired skidders. 

3.3 Field methods 

Swales were chosen using data from the USDA Forest Service Burned Area 

Reflectance Classification (BARC) maps (USDA, 2016) and field observations (Parsons 

et al., 2010). In the Rim Fire, all logged swales were chosen in areas of high burn severity 

within timber harvest boundaries. Control swales were also located within high burn 

severity areas and timber harvest boundaries, and all logging activity was excluded 

within the swale boundaries. Silt fences (adopted from Robichaud and Brown, 2002) 

were installed at the outlet of each swale following salvage logging in each unit. Each 

fence had an electronic stage sensor (Milone Technologies, Sewell, NJ) to record when 

runoff occurred. Swale slopes were calculated using the same methods as in chapter two 

using ArcMap and a 1 m digital elevation model (Stavros et al., 2016). The stumps in 

each logged swale were counted and used as a surrogate for trees removed to characterize 

harvest intensity. 

Patches of similar disturbance were surveyed using a mapping grade GPS unit 

with sub-meter accuracy, and all GPS data were differentially corrected and post-

processed in ArcMap. Disturbed areas were classified into five classes: untrafficked by 

logging equipment; feller buncher tracks; mixed traffic areas which had a heterogeneous 

mix of disturbed and undisturbed soil, often with high slash surface cover and no clear 

indication of which piece of equipment created the disturbance; low traffic skid trails 

where six or fewer one-way skidder passes were made, some soil cover was retained, and 

ruts were less than 10 cm deep; and high traffic skid trails where the main skidding routes 
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were located, where more than six skidder passes occurred and the soil cover was 

removed (Figure 3.4). A sixth disturbance class, subsoiled, occurred and was surveyed in 

logged swales ASW 3 and FSW 10 in 2016; bulldozers equipped with “winged” shanks 

created furrows in the soil in order to decrease compaction and increase infiltration along 

skid trails in these swales (Figure 3.5). ASW 3 was subsoiled September 2015, and FSW 

10 was subsoiled in May 2016. Waterbars, which were installed on skid trails as a best 

management practice to divert water off the skid trails, were also surveyed in the field. 

The distance from the waterbar outlet to the swale outlet was measured in ArcMap. 

Ground cover measurements were made along three transects in each swale in 

2014, 2015, and 2016. Ground cover, soil bulk density, and field saturated hydraulic 

conductivity were made within areas of homogenous logging disturbance following 

logging. 

Soil bulk density samples were taken in both untrafficked areas and in each class 

of disturbance in each swale in 2015 following logging. Samples were obtained by using 

a slide hammer to insert a 90.5 cm3 core into the soil to a target depth of either 0-5 cm or 

5-10 cm below the surface; the core was removed, and the sample was bagged, and later 

oven dried for 24 hours at 105 °C and weighed in the laboratory to calculate the soil bulk 

density. 

Field saturated hydraulic conductivity was measured after logging near the post-

logging bulk density sample locations using a dual head infiltrometer (Reynolds and 

Elrick, 1990, Decagon Devices, Inc., Pullman, WA). The infiltrometer consisted of a ring 

which was inserted in the ground to a depth of 5 cm. Pressure in the sealed chamber 

inside the ring was maintained at 5 cm and 10 cm total head for two cycles of 15 minutes 

each following a 15 minute wetting cycle. 

Ground cover data along transects were collected with the same technique 

described in chapter two, using the same cover categories except that additional 

observations were used to classify if cover was in contact with the ground or suspended 

over the ground (aerial ground cover). This resulted in three additional classes: aerial 

ground litter, aerial ground vegetation, and aerial ground wood. The ground cover 

underlying any of the aerial ground classes was also recorded. Two separate cover 
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categories were calculated: “interception cover”, all ground and aerial ground cover that 

would intercept rainfall, and “surface cover”, which was only the ground cover in contact 

with the soil surface. Post-fire cover measurements were made in all swales before 

logging in August 2014, in May 2015 following salvage in Triple A and before salvage in 

either Femmons unit, in July 2015 following salvage in the Lower Femmons unit, and in 

all swales in May 2016 following salvage. 

Rills (Figure 3.4G, H) were mapped following logging using the same survey 

technique outlined in section 2.3, with the addition that each rill was also classified by 

initiation point in either one of the disturbance categories or as untrafficked. Rills were 

mapped in spring 2015 in Triple A, and spring 2016 in Lower and Upper Femmons, and 

again in ASW 3 in spring 2016 following subsoiling. 

Ground cover was measured in each disturbance class using a 100 point grid. 

Three cover grids were randomly chosen in each disturbance class per swale, with the 

exception of feller buncher tracks in FSW 10 and low traffic skid trails in FSW 13, where 

the minimal disturbance footprint only allowed two cover grids. Disturbance cover was 

averaged across the three grids for each year. 

Precipitation was recorded near each swale using a tipping bucket rain gage 

Rainwise, Inc, Trenton, ME) coupled to a HOBO data logger (Onset Computer 

Corporation, Bourne, MA). Three gages were installed in Triple A, two in Lower 

Femmons, and two in Upper Femmons (Figure 3.3). Precipitation events were separated 

by six hours of no rainfall, and the total accumulation, duration, and maximum 10 

minute, 30 minute, and 60 minute rainfall intensities (I10, I30, and I60 respectively) were 

calculated for each event. Precipitation data from the nearest rain gage was used for each 

swale. In cases where rain gages stopped working, the next closest rain gage was used. 

The rain gages at ASW 1, FSW 10, and FSW 12/13 and stage data from ASW 1, FSW 9, 

and FSW 13, the most responsive swales to rainfall in each unit, were used to determine 

which individual storms produced measurable runoff at the swale outlets. 

Sediment was removed from silt fences approximately ten times. During the 

spring, summer, and fall seasons, sediment was removed after each runoff producing rain 

event; during the winter, multiple rain events occurred before fences could be accessed 
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and emptied. Sediment was removed from fences and processed as described in section 

2.3. 

3.4 Statistical methods 

All statistical analysis was done in the R software (R Core Team, 2016) using a 

significance level of 0.05. Linear mixed effect models were developed using the lme4 

package (Bates et al., 2014). For all models, normality and homogeneity were assessed 

by quantile-quantile plots and by plotting the residuals against predicted values; models 

met the standard assumptions (Winters, 2013). Fixed effect significance was assessed 

with an F-test using the Kenward-Roger approximation to the denominator degrees of 

freedom (Halekoh and Højsgaard, 2014) with the Anova function from the car package 

(Fox and Weisberg, 2011), which utilizes multiple model comparisons with fixed effect 

removals to determine significance. Coefficients of determination (r2) for the marginal 

(fixed effects) and conditional (fixed effects and random effects combined) were 

calculated with the MuMIn package (Barton, 2016). The lsmeans package (Lenth, 2016) 

was used to compare fixed effects and fixed-covariate interactions in all models, with a 

Tukey adjustment. For all comparisons that involved measures over more than a single 

year, year or water year were treated as factors, in order to facilitate comparisons by 

period (Duursma and Powell, 2016). 

The general form of the models used for comparisons was the response variable 

modeled by disturbance class or treatment (fixed effects), with year and logging status 

(pre or post salvage) used as fixed effect factors for measurements made over multiple 

dates, and swale or unit as the random effect, depending on the number of observations 

(Table 3.2). Field saturated hydraulic conductivity rates were log10 transformed to 

normalize residuals. At the swale scale, interception and surface ground cover were 

compared for 2014, 2015, and 2016. Surface ground cover within disturbed areas was 

compared for both 2015 and 2016. 

Rill densities were square root transformed to normalize residuals, and compared 

by treatment with Unit as a random effect (Table 3.2). We then modeled the response of 

rill density to a covariate and an interaction between the covariate and treatment. Models 

relating rill density to logging disturbance were built using the subset of only the logged 
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swale data. Covariates used in the model were total surface cover, total interception 

cover, surface wood, litter, vegetation and rock cover, the number of connected rills, 

channel density, and the mean swale slope (Table 3.2). For the logged swales, covariates 

were the percent area for each disturbance class, the number of waterbars in each swale, 

and the distance from waterbar outlets to the swale outlet (Table 3.2). 

Sediment yields were summed by water year (1 October – 30 September), log10 

transformed to normalize residuals, and compared using an interaction between water 

year, treatment, and unit, with swale as the random effect (Table 3.2). We then modeled 

the response of sediment yield for the two fixed effects of treatment and water year and a 

single covariate, with interactions among the variable, treatment, and water year. 

Covariates used were the same used in the rill density model, with the addition of total 

rill length and rill density (Table 3.2). Models relating sediment yield to logging 

disturbance were built using a subset of only the logged swale data. 

Simple linear regression was used to model the number of stumps in logged 

swales to the total area disturbed by skidding in each swale. The mean rill length to swale 

outlet was compared across disturbance classes using analysis of variance and multiple 

group comparisons with a Tukey adjustment. 

3.5 Results 

Harvest intensity 

Logging resulted in 20-162 stumps ha-1 in logged swales, and a mean stump 

diameter of 53 cm with a standard deviation of 21 cm (Table 3.1, Figure 3.6). The linear 

regression of total percent area skid trails versus stumps ha-1 indicated stumps ha-1 

explained 17% of the combined high and low traffic skid trails in logged swales (p = 

0.27). FSW 13 in Upper Femmons had the lowest stumps ha-1 measurement of 20, and 

9% total area in skid trails, making it the least intensively logged swale. FSW 9 had 162 

stumps ha-1, making it the most intensively logged swale; however skidding operations 

were confined to one main skid trail covering only 15% of the swale. 

Logging disturbance 

Total ground disturbance from logging equipment ranged from 9-56% in logged 

swales with a mean of 31% and standard deviation of 15% (Figure 3.7). Feller buncher 
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tracks represented the lowest amount of soil disturbance with a mean of just 2%, but 

some feller buncher tracks were later used by skidders. Mixed traffic disturbance 

averaged just 7%, and was only present in five of nine logged swales. Logging soil 

disturbance was dominated by skidding traffic. Low traffic skid trails ranged from 0-14% 

disturbance of swales, with a mean of 6%. High traffic skid trails appeared in each logged 

swale and were the most prevalent soil disturbance class (9-29%), averaging 17% across 

logged swales. Detailed individual swale disturbance data are available in Appendix E. 

Mixed traffic disturbance and low traffic skid trails were typically observed 

branching off of high traffic skid trails (Figure 3.8). In some cases mixed disturbance 

areas were part of log landings. Many of the high traffic skid trails had waterbars to 

divert water off of skid trails as a best management practice. There were 2-4 waterbars 

installed on skid trails per swale. 

Soil bulk density 

Following logging, untrafficked areas had mean soil bulk densities of 1.16 g cm-3 

at the 0-5 cm depth and 1.23 g cm-3 at the 5-10 cm depth (Figure 3.9). Mean soil bulk 

density at the 0-5 cm depth in the high traffic skid trails was 1.31 g cm-3 and was 

significantly higher than the untrafficked areas (p = 0.03, n = 41). At the 5-10 cm depth, 

untrafficked areas had a significantly lower mean soil bulk density (1.23 g cm-3) than the 

mixed traffic (1.41 g cm-3, p = 0.01, n = 42) and high traffic skid trails (1.44 g cm-3, p = 

<0.0001, n = 42). Mean bulk density in the feller buncher tracks was also significantly 

lower than the bulk density in the high traffic skid trails at the 5-10 cm depth (1.34 g cm-

3, p = 0.02, n = 42). Bulk density values by swale and disturbance class are available in 

Appendix F. 

Field saturated hydraulic conductivity 

Field saturated hydraulic conductivity in untrafficked soil averaged 0.0103 cm s-

1, while conductivity in the feller buncher tracks, mixed traffic, low traffic skid trails and 

high traffic skid trails averaged 0.0023, 0.0016, 0.0035, and 0.0007 cm s-1, respectively 

(Figure 3.10). The mean field saturated conductivity rate in untrafficked soil was 

significantly different from the conductivities in all other disturbance classes (n = 45). 

The high traffic skid trails had significantly lower mean field saturated hydraulic 
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conductivities than feller buncher tracks and low traffic skid trails, but not the mixed 

disturbance areas. Field saturated hydraulic conductivity values by swale and disturbance 

class are available in Appendix G. 

Swale surface and interception cover 

In 2014, prior to any logging, interception cover averaged 39% and surface cover 

averaged 26%, and there was no significant difference between controls and swales 

designated to be logged (Figure 3.11, 3.12). There were also no differences in litter, 

vegetation, wood or rock cover for either the surface or interception cover in 2014. In 

2015 in Triple A, following salvage, logged swales had an average of 23% more surface 

cover than control swales, which was close to significantly different (p = 0.07). There 

was no significant difference in interception cover in Triple A for 2015. Neither cover 

type was significantly different between treatments in 2016. In Lower Femmons, there 

were no significant differences between treatments for both total interception and total 

surface cover before or after logging in 2015, although post-salvage logged swales had an 

average of 10% more surface cover. There were no significant differences in either 

interception and surface cover between logged and unlogged swales in Lower Femmons 

in 2016. In Upper Femmons, there were no significant differences in either interception 

or surface cover between logged and unlogged swales in 2015, nor after logging in 2016. 

The logged swale in Upper Femmons averaged approximately 4% less cover than the 

control swales in 2016. Across all logging units, in 2016, Upper Femmons had the 

highest mean bare soil in both the control (75%) and the logged swales (53%). Yearly 

swale surface and interception cover data are presented in Appendix I. 

After logging, there were no significant differences in surface litter, vegetation, or 

rock cover between treatments in any of the three units. However, logging did have a 

significant effect on wood cover. In the 2015 post-salvage survey in Triple A, logged 

swales had an average of 14% more wood cover than control swales (p < 0.0001) (Figure 

3.12A). However, by 2016, tree fall was observed along the bottom transect of both 

Triple A control swales and the difference was no longer significant. Following logging 

in May 2015, logged swales in Lower Femmons had a significantly higher mean wood 

cover than the control swale (9% difference, p = 0.003), and the significant difference 
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persisted in 2016 (Figure 3.12B). The difference in post-salvage wood cover between the 

logged and control swales in Upper Femmons was also significant (p = 0.02). The Upper 

Femmons logged swale had a mean of 8% more wood cover than the control swales 

(Figure 3.12C). 

Logging disturbance class surface cover 

In both years surface cover generally decreased with increasing traffic intensity, 

and there was high variability in surface cover both between and within disturbance 

classes (Figure 3.13A). Surface cover in 2015 was dominated by litter with a range of 23 

- 63% across all classes. The exception was mixed traffic areas which had a mean of 25% 

wood cover in addition to 29% litter. Total surface cover in untrafficked areas was the 

highest with a mean of 65% in 2015, while high traffic skid trails were lowest with a 

mean of 32% (Figure 3.13B). Vegetative surface cover averaged only 0-10% across all 

disturbance classes, as the majority of vegetation was not in contact with the soil surface. 

By 2016, vegetative surface cover had increased substantially in untrafficked 

areas to a mean of 42%, while within the other disturbance classes vegetation only ranged 

from 3-22%. Logging disturbed areas ranged from 8-29% mean wood cover, while 

untrafficked areas only had a mean of 5%. The difference can be attributed to slash from 

harvesting activities. Average litter cover decreased in every class from 2015 to 2016, 

with the largest decrease of 50% occurring in untrafficked areas. This decrease is likely 

due to litter being covered up by increasing vegetative cover. Untrafficked areas again 

had the highest mean surface cover (61%), while the high traffic skid trails were the 

lowest (28%) (Figure 3.13B). Disturbance class surface cover data are available by class, 

swale, and year in Appendix H. 

In 2015, the second year after the fire, the mean surface cover was significantly 

higher in untrafficked and mixed traffic areas than in the high traffic skid trails (Figure 

3.13B). Among the feller buncher tracks, low traffic skid trails, mixed traffic, and 

untrafficked areas there were no significant differences in surface cover. High traffic skid 

trails did not significantly differ from the feller buncher tracks or low traffic skid trails 

for surface cover. In 2016, ground cover in untrafficked areas was significantly higher 

than in the low traffic and high traffic skid trails, including those that were subsoiled. 
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Mixed traffic areas again had higher ground cover than the high traffic skid trails, in 

addition to those that were subsoiled. Surface cover in the subsoiled skid trails was also 

significantly lower than the low traffic skid trails and feller buncher tracks, but was not 

significantly different from surface cover in the high traffic skid trails. 

Precipitation 

The study was conducted during a long-term drought in California characterized 

by low rainfall and snowfall accumulation and few large storms. The 2015 water year 

was especially dry, while 2016 had increased rainfall relative to 2015 (Figure 3.14, 3.15). 

The winter of 2015-2016 was an El Niño year, which is typically characterized by an 

elevated precipitation regime in the western US. Precipitation for the 2015-2016 winter in 

the Rim Fire was characterized by more frequent and longer duration events. The mean 

I10, I30, and I60 for all precipitation events for the 2016 water year were approximately 1 

mm hr-1 less than in water year 2015. 

Precipitation at the ASW 1 rain gage totaled 265 mm for water year 2015, and this 

came in 31 separate precipitation events, including two large events in February 2015. 

For the 2016 water year, precipitation totaled 867 mm at the ASW 1 rain gage, and 1012 

mm at the ASW 4/5 rain gage. The majority of precipitation during water year 2016 

occurred during the winter months of November through March, with the exception of 

February, when only 43-48 mm of precipitation was recorded (Figure 3.15). Each month 

the ASW 4/5 rain gage recorded slightly more precipitation than the ASW 1 rain gage. 

The ASW 1 rain gage recorded 65 separate rain events, while ASW 4/5 recorded 72. 

In Lower Femmons, the FSW 11 rain gage, which was installed in July 2015, 

recorded only a trace amount of precipitation in July (< 1 mm) for the 2015 water year. 

Through the end of May for the 2016 water year, 1,101 mm of precipitation was recorded 

at FSW 10, and 1,172 mm at FSW 11, falling mostly throughout the winter months of 

November through March (Figure 3.15). 56 and 61 separate rain events occurred at FSW 

10 and FSW 11, respectively. Similar to the Triple A rain gages, less precipitation was 

recorded in February 2016 (47 -50 mm). 

The Upper Femmons rain gages at FSW 12/13 and FSW 14, which were installed 

in November 2015, recorded similar patterns in precipitation as were recorded in Triple A 
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and Lower Femmons in the 2016 water year (Figure 3.15). FSW 12/13 received 877 mm 

of precipitation, while FSW 14 received 943 mm. FSW 12/13 recorded 47 separate rain 

events, while FSW 14 recorded 52 rain events. Complete precipitation data by rain gage 

and event are available in Appendix J. 

Individual precipitation events occurred throughout each year, but were more 

frequent during the winter months. During the 2015 water year in Triple A the I60 ranged 

from 0.3 to 15 mm hr-1, while the total event rainfall ranged from 0.3 to 50 mm (Figure 

3.16). The maximum I60 of 15 mm hr-1 occurred in February 2015, approximately one 

month after logging. In 2016 in Triple A, the I60 ranged from 0.3 to 13 mm hr-1, while the 

total event rainfall ranged from 0.3 to 113 mm. In Lower Femmons in 2016 the I60 ranged 

from 0.3 to 11 mm hr-1 with an event rainfall range of 0.3 to 189 mm (Figure 3.16). In 

Upper Femmons, the 2016 I60 for precipitation events ranged from 0.3 to 12 mm hr-1, and 

the event rainfall ranged from 0.3 to 180 mm (Figure 3.16). 

The storms that produced runoff and sediment in the logged swales in 2015 had 

mean I10, I30, and I60 values of 15 mm hr-1, 10 mm hr-1, and 8 mm hr-1, respectively 

(Figure 3.17 A, B, C). In the wetter 2016, the values were 12 mm hr-1, 8 mm hr-1, and 7 

mm hr-1 (Figure 3.17 A, B, C). Runoff producing storms averaged 19 mm of precipitation 

in 2015, and had a mean duration of 12 hours, and in 2016 averaged 37 mm of 

precipitation and 18 hours in duration (Figure 3.17 D, E). 

Rills 

Overland flow caused rills to form in all 14 swales regardless of treatment. In the 

Triple A control swales, rills formed on bare hillslopes, connecting to the outlet either 

directly or via an ephemeral channel (Figure 3.18). Rills in the logged swales typically 

initiated in disturbed areas on the hillslopes, most often within high traffic skid trails 

(Figure 3.18). Rills in high traffic skid trails were typically diverted downslope off the 

skid trail at waterbars, and often reached the outlets. Rills from low traffic skid trails and 

feller buncher tracks connected to the outlet most often when the disturbance features 

were in close proximity to an ephemeral channel or the swale outlet. In ASW 4, several 

rills formed in logging disturbance in the upper portions of the swale, however each rill 

crossed into and ended in a large undisturbed area in the middle of the swale that was 
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densely vegetated (Figure 3.18, 3.19A). Following subsoiling in ASW 3, rills formed in 

the ripped high traffic skid trails, including several deep rills within furrows (Figure 

3.20). The skid trails in ASW 3 were not parallel to the contour, and as such, the 

subsoiling was also not parallel to the contour. 

In Lower Femmons, rill networks formed in a similar fashion to Triple A (Figure 

3.21). FSW 8, the control swale, formed parallel rills on the lower bare hillslope that 

connected directly to the outlet, while intermittent rills formed upslope that later 

disappeared in dense vegetation or stump holes (Figure 3.19B). In FSW 9 and 10, rill 

patterns were similar to those observed in Triple A; rills formed in high traffic skid trails, 

were redirected downslope off of skid trails at waterbars and areas of low surface cover, 

and connected to the outlet. Logging disturbance in close proximity to the outlet formed 

and directly contributed rills to the outlet in both FSW 9 and 11. FSW 11 formed several 

rills upslope, however they all crossed into dense vegetation downslope before reaching 

the outlet. 

In Upper Femmons, the logged swale FSW 13 formed several rills in untrafficked 

bare soil that connected via an ephemeral channel. Rills from skid trails and waterbars 

connected to the outlet when in close proximity to the ephemeral channel, and otherwise 

infiltrated upslope in FSW 13. The control swales in Upper Femmons were characterized 

by rills forming on bare hillslopes that connected to ephemeral channels and reached the 

outlet (Figure 3.21). 

Rill densities in control swales ranged from 3.1-16 cm m-2 with a mean of 7.9 cm 

m-2 (Figure 3.22). In the logged swales, densities ranged from 0.35-22 cm m-2 and had a 

mean of 8.9 cm m-2. Channel densities across treatments ranged from 0.8-2.0 cm m-2, and 

were present in six of nine logged swales and three of five controls. Channels were found 

in swales with highly convergent hillslopes, and logging did not affect the presence of 

channels. 

Rill density in ASW 3 increased from 11 cm m-2 to 15 cm m -2 following 

subsoiling in fall 2015. Subsoiling in the skid trails removed existing rills, and during the 

winter of 2015-2016, new rills developed in furrows which were concentrated and 

directed downslope at waterbars. 
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All rills in control swales initiated in untrafficked bare soil, while this disturbance 

class contributed only 0-66% of the rill network in logged swales (Figure 3.22). The rills 

within logged swales typically were a mix of rills from untrafficked soil and high traffic 

skid trails. Rills initiating in high traffic skid trails contributed a mean of 5.7 cm m-2 in 

logged swales, and constituted anywhere from 0-89% of the total rill density (Figure 

3.22). Control swales had between 4-18 rills that reached the outlet, while logged swales 

had 0-15 rills from untrafficked areas and 1-12 rills from logging disturbance that 

reached the outlet (Figure 3.23). Complete individual rill data by swale are included in 

Appendix K. 

The rill length to the outlet also varied by the disturbance type at the rill initiation 

point. Rills from untrafficked soil had a mean length to outlet of 32 m (Figure 3.24). Rills 

from feller buncher tracks averaged 19 m, while rills initiating in mixed traffic areas had 

a mean of 26 m. Low traffic skid trail rills averaged 39 m from initiation point to the 

outlet, while rills initiated in high traffic skids had a mean length to the outlet of 49 m. 

One rill in ASW 1 initiated from the upper area of the skid trail in that swale (Figure 

3.18), and this is visible in the cluster at around 100 m in the high traffic skid trail 

category in Figure 3.24; the rest of the rills in this cluster of points are from FSW 13 in 

Upper Femmons. The mean rill lengths for rills initiating in untrafficked soil and feller 

buncher tracks were significantly different than the lengths of rills initiating in high 

traffic skid trails. 

The model result was that there was no significant difference in rill densities 

between control and logged swales. For all predictors, the marginal and conditional r2 

values were the same, as unit had almost no effect on rill density (Table 3.3). The total 

interception cover was the only significant cover predictor (p = 0.04) and explained 34% 

of the variance. Surface wood cover was not a significant predictor, despite logging 

significantly elevating wood cover in the swales. The only variable that had a significant 

interaction with treatment was mean swale slope (p = 0.047). The response in controls 

was a 0.271 unit increase in rill density for every one percent increase in mean slope, 

while in logged swales rill density decreased 0.103 units for each percent increase in 

slope. One explanation for this result may be that the logged swales with lower slopes 
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were easier to operate equipment on which led to more extensive skid trails, which in turn 

initiated rills. ASW 3 had 21% high traffic skid trails, the second highest percentage in 

Triple A, and the lowest mean slope (15%). However, 76% of the rill network in ASW 3 

was initiated by skid trails, and the rill density was the second highest of the logged 

swales in Triple A. 

The strongest predictor of rill density within the logged swales was the distance 

from the waterbar outlet to the swale outlet; the marginal and conditional r2 was 0.55, and 

the effect was significant (p = 0.03), with a slope coefficient of -0.05. The number of 

waterbars in each swale was also a significant predictor of rill density (p = 0.045) and 

explained 50% of the variance; rill density increased 1.16 units per waterbar. Total 

disturbance was not significant and only explained 7% of the variance. The percent area 

of high traffic skid trails explained 43% of the marginal and conditional variance and was 

nearly significant as a predictor of rill density (p = 0.056). Other disturbance classes had 

no significant effect on rill density, and this may be due to the wide range of variability in 

presence and percent cover of the other classes. 

Sediment yield 

During the 2015 water year in Triple A, the average sediment yield in the control 

swales was 4.3 Mg ha-1, with a range of 1.8-6.8 Mg ha-1 (Figure 3.25A). The logged 

swales had a mean sediment yield of 3.0 Mg ha-1, and a range of 0.3-8.1 Mg ha-1 (Figure 

3.25A), and the difference between treatments was not significant. A majority of the 

recorded sediment yields for 2015 occurred during February 2015 during a high intensity 

(I60 = 15 mm hr-1) precipitation event that occurred approximately one month after 

logging (Figure 3.16). For the 2016 water year, mean sediment yield in the Triple A 

controls was 0.9 Mg ha-1, while the logged swales averaged 1.1 Mg ha-1, and this 

difference was not significant (Figure 3.25B). Each swale except the subsoiled ASW 3 

produced less sediment in water year 2016 than water year 2015. In the other swales, 

despite the increased number of precipitation events and total precipitation amount 

relative to water year 2015, sediment yield decreased. 

Fences were installed in Lower Femmons in July 2015, and no sediment was 

produced between that date and the end of the water year. In Lower Femmons, the 
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sediment yield in the control swale was 0.1 Mg ha-1 for the 2016 water year, while the 

logged swales averaged 1.1 Mg ha-1 (0-2.7 Mg ha-1 range) (Figure 3.25C). In Upper 

Femmons the two control swales averaged 11.8 Mg ha-1 while the logged swale had a 

sediment yield of 3.2 Mg ha-1 (Figure 3.25D), and the difference in treatments was not 

significant. The 2016 mean sediment yield of the Upper Femmons control swales was 

much higher than both the Triple A and Lower Femmons control swales. Additionally, 

the logged swale in Upper Femmons produced the highest sediment yield of all logged 

swales for water year 2016. Complete annual sediment yield data are included in 

Appendix L. 

Statistical model results indicated that none of the cover variables were significant 

predictors of sediment yield regardless of treatment or water year (Table 3.4). The total 

surface cover explained 23% of the marginal variance (p = 0.11), while the total 

interception cover explained 20% of the marginal variance (p = 0.23). Surface vegetation 

was a nearly significant predictor of sediment yield (p = 0.08; marginal r2 = 0.20, 

conditional r2 = 0.88), as was surface rock cover (p = 0.07; marginal r2 = 0.36, 

conditional r2 = 0.74); surface rock cover was a positive covariate with sediment yield. 

The rill density (p = 0.004; marginal r2 = 0.34, conditional r2 = 0.85), was a highly 

significant predictor of sediment yields. Rill density explained 34% of the marginal 

variance in sediment yields 85% of the conditional variance in sediment yields. Sediment 

yield increased as rill density increased for both the 2015 and 2016 water year (Figure 

3.25E). The sum of the rill lengths was a significant predictor of sediment yields (p = 

0.02; marginal r2 = 0.54, conditional r2 = 0.76). In the logged swales none of the 

disturbance variables were significant predictors. The highest marginal r2 was for the 

number of waterbars (r2 = 0.24; p = 0.27), followed by the distance from the waterbar 

outlet to the swale outlet (r2 = 0.22; p = 0.36). 

3.6 Discussion 

Ground cover, soil bulk density, and the field saturated hydraulic conductivity 

rates within catchments can be crucial factors to the initiation of rill erosion, and the 

results of this study support past results of the effect of salvage logging on these factors. 

Several studies have concluded that increasing traffic levels of logging equipment, 
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especially log skidders, results in decreased ground cover, increased soil bulk density, 

and decreased infiltration rates (Croke et al., 2001, Wagenbrener et al., 2015, 

Wagenbrenner et al., 2016). In the logged swales, increased soil bulk density and 

decreased surface cover and field saturated hydraulic conductivity in disturbed areas 

generated runoff, which initiated rills more often than within untrafficked areas. 

While the Rim Fire swales indicated that the effects of logging disturbance can 

reduce surface cover at the scale of a few meters, the effect on ground cover was 

insignificant at the swale scale. Wagenbrenner et al. (2015) also found that logging did 

not have a direct effect on ground cover at the swale scale in several sites in the western 

US. The lack of an effect at the swale scale may be due to logging disturbance not being 

extensive enough in some swales to register a significant difference between treatments, 

in particular the swales logged less intensively at later dates. Bare ground due to logging 

disturbance was likely often covered by the high amount of wood cover from harvest 

activity in logged swales. In regards to lasting effects over time, not just the two years of 

surveys in our study, Peterson and Dodson (2016) found that in one northeastern Oregon 

site, salvage logging had no lasting impact to understory vegetation. 

Past research indicated that increases in wood cover as a result of salvage logging 

may help mitigate soil loss following the cumulative impact of wildfire and post-fire 

salvage disturbance (Poff, 1989, Wagenbrenner et al., 2015). The pulse of wood debris 

following salvage logging in this study is in line with similar past findings (Donato et al., 

2006, Peterson et al., 2015). Wood contributed to higher surface cover in logged swales 

than controls, however the difference in surface cover between treatments was not 

significant. Neither the amount of wood cover nor the total surface cover had a 

significant effect on either rill formation or sediment yield. 

In our study swales, even three years post-fire in 2016, bare soil in logged and 

control swales still averaged 48% and 58%, respectively, despite the increase in surface 

cover from wood. Berg et al. (2010) found that plots with rills in recently burned forests 

had a median of 53% bare soil, similar to our cover values. 

Our lack of significant difference in mean rill density and sediment yields 

between treatments indicates that the resulting wood cover from logging was not 
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effective at mitigating erosion. Wagenbrenner et al. (2016) found that adding slash to 

areas disturbed by logging equipment had no effect on sediment flux in simulated rill 

experiments; their study noted that wood may not be in effective contact with the soil 

surface, allowing runoff to undercut or circumnavigate slash. An alternate theory is that 

the relative impact of wood cover on sediment storage capacity may be minimal, which 

could lead to the maximum capacity being reached during the first runoff producing 

precipitation events following logging. 

The wood cover in logged swales in our study was typically clustered near where 

trees had been felled and skidded, and was therefore relatively patchy across the swale. 

Patchy cover with as little as 25% wood cover downslope of runoff was found to 

significantly reduce erosion rates following prescribed fire (Harrison et al., 2016). While 

wood may increase the surface roughness, which can directly reduce erosion, the spatial 

location of wood is important. Ensuring that wood covers and is downslope of bare 

patches of soil may help to increase the overall effectiveness of adding wood slash to 

reduce rill erosion and sediment yields from post-fire salvaged areas. 

Logging disturbances located near areas of high vegetative cover and natural 

sediment sinks such as stump holes were less likely to be connected and deliver sediment 

to the outlet. The lack of significant correlation between sediment yield and percent area 

disturbed alone indicates that there was an important spatial component to disturbance in 

logged swales. Large undisturbed areas and areas of high surface cover below some of 

the logging disturbances, in particular concentrated dense wood cover, allowed sediment 

deposition to occur before reaching outlets or ephemeral channels (see mapped examples 

in ASW 4 and FSW 11, and upper portions of FSW 13, Figures 3.18, 3.21). 

Proximity of logging disturbance to features such as ephemeral channels, bare 

soil, areas of low post-fire vegetative recovery, and other logging disturbances generally 

enhanced rill connectivity and sediment delivery to the outlet. For example, rills from 

skidding disturbance and waterbars near ephemeral channels in ASW 1, ASW 5, and 

FSW 13 were connected to outlets due in part to their proximity to the channels. FSW 9, 

which averaged 48% bare soil in untrafficked areas following logging, exemplifies the 

connectedness of rills that initiated in high traffic skid trails passing through areas of low 
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vegetative recovery to connect to the swale outlet. In contrast, FSW 11 and its 19% bare 

soil within untrafficked areas following logging, and had no rills from high traffic skid 

trails reach the swale outlet. 

The Rim Fire Environmental Impact Statement (USDA, 2014) required an entire 

logging unit to be less than 15% skid trails. In our study, several individual swales had 

15% or more area in high traffic skid trails with differing responses in sediment yield. 

ASW 5 in the Triple A unit was 28% high traffic skid trails, had a rill density of 22 cm m-

2, and produced the highest sediment yield in Triple A in 2015 (8.1 Mg ha-1). FSW 9, 

with high traffic skid trails in 15% of the swale, produced the most sediment in Lower 

Femmons for 2016 (2.7 Mg ha-1), with a rill density of 15 cm m-2. FSW 10, also in Lower 

Femmons, was 29% high traffic skid trails, with much of the disturbance in the upper 

portion of the swale, and not directly connected to the outlet. As such, FSW 10 developed 

a rill density of only 10 cm m-2, and had a cumulative sediment yield of only 0.5 Mg ha-1 

for the 2016 water year. These examples indicate that it might be more reasonable to 

enforce a limit on skid trail footprint within individual catchments instead of across an 

entire harvest unit. Our results suggest that 15% or more area in high traffic skid trails 

would lead to relatively high rill network connectivity and sediment yields if the 

impacted area were above relatively uncovered areas, or if the disturbance was close to 

the channel. 

Past research has noted that the spatial and location of skid trails in burned and 

logged areas can play an important role in determining sediment delivery (McIver and 

McNeil, 2006, Wagenbrenner et al., 2015), at both the swale (Wagenbrenner et al., 2015) 

and watershed scale (Silins et al., 2009). Within our study swales the spatial location of 

high traffic skid trails relative to channels and areas of low ground cover played an 

important component in connectivity and sediment yields, in addition to the percent area 

disturbed by high traffic skid trails. 

In the linear mixed model, rill density in logged swales increased as the number 

of waterbars increased and when waterbars were in closer proximity to the outlet. Rills 

from high traffic skid trails that connected to swale outlets traveled a significantly longer 

distance than rills from burned and untrafficked portions of the swales, likely due to the 
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low surface roughness along their flowpaths. Litschert and MacDonald (2009) found that 

skid trails and waterbars were the typical sources of sediment that reached streams and 

rivers in unburned harvest sites throughout the Sierra Nevada; in particular, they 

observed a lack of surface roughness downslope of waterbars, which encouraged rill 

formation and erosion. Approximately 56% of the waterbars within logged swales in our 

study directed rills downslope and allowed the rills to reach the outlet directly or by an 

ephemeral channel. The low surface cover in burned areas may contribute to the 

likelihood that rills diverted off of skid trails by waterbars reach downslope ephemeral 

channels and outlets, similar to the findings of Litschert and MacDonald (2009). 

We are not implying that the use of waterbars as a best management practice 

(BMP) for post-fire logging should be discontinued. To the contrary, our results show 

that the lower surface cover, increased soil compaction, and reduced field saturated 

hydraulic conductivity rates within skid trails enhance runoff and erosion generation and 

reduce the likelihood of infiltration of surface runoff relative to undisturbed burned areas. 

Diverting runoff from the relatively smooth and impervious skid trails to the otherwise 

undisturbed recovering burned area may still allow rilling and sediment delivery to occur, 

but the undisturbed slopes impart less risk of rill incision and unhampered sediment 

delivery downstream. Our study indicates that the use of waterbars as a BMP in burned 

and logged areas requires consideration of waterbar placement in regards to downslope 

surface cover and proximity to ephemeral channels. Careful waterbar placement scales up 

to careful planning and consideration for the location and extent of high traffic skid trails 

relative to ephemeral channels and areas of low vegetative recovery in burned and logged 

catchments. 

Because of the risk of significant post-fire erosion with even a single intense 

storm event, mitigating the effects of logging disturbances as potential runoff and erosion 

sources should be considered. Mulching may be an effective and economically justifiable 

option to reduce sediment loss in salvage logged areas (Robichaud et al., 2013, Fernandez 

and Vega, 2016), and in particular to reduce rill connectivity from high traffic skid trails 

and waterbars. 
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Explicitly testing the effectiveness and impact of waterbars in burned and logged 

catchments was outside the scope of this study. These results are more indicative of the 

effects of the general operational techniques and BMP’s implemented in each unit for the 

Rim Fire salvage operations. Future research should be designed to quantify the benefits 

of using waterbars as a post-fire salvage BMP and to determine the effective distance at 

which runoff from watearbars disperses and infiltrates on burned hillslopes. Further, 

given the relationship between waterbars and connectivity to the swale outlets, alternative 

designs to reduce this connectivity should be tested, such as: increased waterbar 

frequency or use of mulch or slash to protect waterbar outlets. 

Subsoiling was another BMP used to mitigate the impacts from some skid trails, 

reducing soil compaction and increasing infiltration within skid trails. Skid trails in one 

swale, ASW 3, were subsoiled in September 2015 before the winter wet season began. 

The effect of subsoiling in this example was that following precipitation, the rills 

reformed within the furrows in the skid trail, were concentrated at the waterbars, and 

directed downslope where they connected to the outlet. The rill density increased for 

ASW 3, and ASW 3 was the only swale for which the sediment yield was higher in the 

2016 than in 2015. Additionally, the new rills in the furrows appeared deeper and wider 

than the rills that were removed by subsoiling. 

One explanation is that the subsoiling before the winter wet season resulted in 

extensive bare ground being exposed to relatively intense rainfall. Additionally, the 

furrows from subsoiling were not parallel to the slope, which allowed runoff to 

concentrate and have a direct downslope path, enhancing soil erosion because of the 

greater energy available. This single example highlights the need for careful 

implementation of subsoiling as a BMP. Future research specifically addressing the 

effectiveness of subsoiling as a BMP is needed, in order to ascertain the effects on 

sediment yields and the rate of success in salvage logged areas. 

Rill density was a highly significant predictor of sediment yield, indicating that 

sediment yield and rill erosion on hillslopes were strongly related to each other. In both 

logged and unlogged swales, sediment yields increased as rill density increased. In this 

study we were able to identify sediment sources via rills, and that detail is of great value. 
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We can make an inference of what the sediment sources were based on rill initiation 

points. Some unlogged and logged swales, such as ASW 1, FSW 12, and FSW 13 

(Figures 3.18, 3.21), had several rills initiate in untrafficked bare soil and consistent 

sediment delivery during runoff events. The swales where the high traffic skid trails 

initiated rills and became sediment sources also had some of the highest sediment yields 

of logged swales within each unit (see ASW 3, ASW 5, and FSW 9, Figures 3.18, 3.21, 

3.25A, 3.25C). Skid trails can increase rill erosion (Chase, 2006) and have significantly 

higher sediment yields than burned and unlogged areas at the hillslope scale 

(Wagenbrenner et al., 2015). While sediment may be delivered from across the entire 

hillslope, our research suggests that certain rill and sediment sources on hillslopes, such 

as skid trails, can influence cumulative sediment yields in swales. 

The timing of salvage logging in swales also may play a role in determining 

sediment yield, in addition to the extent of logging disturbance. Triple A, the first unit to 

be logged, received fewer precipitation events in water year 2015 than 2016. Large 

precipitation events in February 2015 produced most of the sediment in Triple A for 

2015. Sediment yields in each swale were higher than during the more frequent and 

longer duration precipitation events of 2016 (with the exception of ASW 3, which was 

subsoiled). Kampf et al. (2016) found that sediment yields in burned areas correlated 

strongly with rainfall amounts where intensity exceeded 10 mm hr-1. The February 2015 

events had intensities of 15 and 11 mm hr-1, and cumulative depths of 49 and 45 mm, 

respectively. These two large precipitation events indicate that only one or two intense 

events are needed to produce significant erosion in both burned and burned and logged 

areas. In the case of Triple A, logging occurred just over one year post-fire, from 

November to December 2014. The approximate 14-month lag time resulted in extensive 

disturbed areas in a larger landscape of recovering burned hillslopes, and the secondary 

disturbance occurred just prior to the winter wet season. The year of recovery of the 

logging-disturbed areas and post-fire vegetative recovery in unlogged areas reduced 

sediment yields from 2015 to 2016 in Triple A despite increased precipitation in 2016. 

In 2016, the logged swales in both Triple A and Lower Femmons averaged 1.1 

Mg ha-1. Lower Femmons had several months of post-salvage recovery time before the 
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winter wet season, in addition to the extra year of post-fire recovery, resulting in low 

sediment yields despite being logged that year. The timing of salvage logging, as with 

other cumulative effects (MacDonald, 2000), should be carefully assessed to minimize 

the impact from runoff generating rainfall. The impact of the timing of salvage logging 

on sediment yields is another area of needed study. 

Because of market and wood conditions the logging intensity, which was 

correlated to percent disturbance, appeared to decrease over time since wildfire. Triple A 

averaged 36% disturbance in logged swales, Lower Femmons 30%, and Upper Femmons 

only 9%. Upper Femmons had the lowest level of logging intensity (20 stumps ha-1), 

which was largely concentrated on the upper portion of the swale and on low slopes, 

while the steeper slopes in the swale were avoided (FSW 13). 

Despite the low logging intensity, FSW 13 had the highest sediment yield of all 

the logged swales in 2016. Additionally, both the Upper Femmons controls had higher 

sediment yields than any other control swales in water year 2016. The high sediment 

yields in 2016 in the Upper Femmons unit can be explained by differences in cover, 

channelization, and soil properties. The controls averaged 75% bare soil, and the logged 

swale averaged 53% percent bare soil, and these values were the highest rates of bare soil 

of all he swales in 2016. Each swale was also channelized, providing a direct flowpath to 

the outlet and a source of sediment. 

Control swale FSW 12 developed an extensive rill network and had a narrow, 

steep contributing area, while adjacent logged swale FSW 13 had a much greater 

contributing area that included broad flat slopes in the upper swale. FSW 12 and FSW 13 

both produced similar amounts of raw sediment, but in the context of contributing area, 

FSW 12 had a greater sediment yield. FSW 14 was similar in shape and topography to 

FSW 13, with the exception that the low-slope area at the top of FSW 14 was smaller 

than that of FSW 13. FSW 14 was instead almost entirely steep bare hillslopes with a 

deep centralized channel. These differences likely helped to contribute to a higher 

sediment yield relative to FSW 13. 

The lack of significant difference in sediment yield at the catchment scale 

between logged and unlogged swales due to site to site variability echoes past research 
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(Chou et al., 1994, Chase, 2006, Silins et al., 2009, Stone et al., 2014, Wagenbrenner et 

al., 2015). Our study indicated that salvage logging that occurs 1-2 years post-fire, in 

particular high traffic disturbance, can have negative impacts to soils, ground cover, and 

hydraulic conductivity at scales of a few meters. While these impacts do not scale up to 

the swale scale, they do help to explain the elevated number of rills initiated by high 

traffic disturbances. Additionally, specific features such as skid trails and waterbars may 

need additional mitigation in order to reduce rill networks and their resultant connectivity 

and delivery of sediment. 

To effectively manage salvage logging in burned forests, individually assessing 

and managing each small catchment within a timber harvest area will help ensure that 

detrimental erosion does not occur. Incorporating larger areas of undisturbed ground 

downslope of logging disturbance and upslope of ephemeral channels will increase the 

spatial disconnectivity of logging disturbances. Increasing ground cover on skid trails to 

reduce the initiation of rills, and below waterbars to keep diverted rills from connecting 

to ephemeral channels, will help to ensure that post-fire salvage logging does not increase 

sediment yields. Land managers may be able to more effectively avoid any detrimental 

erosion due to logging activity, in particular skidding operations, by optimizing layout 

and the spatial extent of disturbances within individual catchments. Severely burned 

hillslopes with reduced recovery and more bare soil, relative to areas with more advanced 

recovery, should be treated with more care than areas with more advanced recovery. 

While this may take more effort, the extra effort will help to reduce any potential 

negative impacts from post-fire salvage logging. 

3.7 Conclusion 

This study assessed the effects of post-fire salvage logging on factors controlling 

rill initiation, rill networks, and sediment yields for two years after logging. Increased 

levels of logging equipment traffic, in particular high traffic skid trails, locally reduced 

vegetative and total surface cover, increased soil bulk density, and decreased field 

saturated hydraulic conductivity relative to untrafficked areas. The amount of logging 

disturbance was highest in swales logged 14 months post-fire, and decreased in units 

logged at later dates. Logging did not significantly affect the mean ground cover, rill 
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density, or sediment yields at the swale scale. However, logging resulted in significantly 

increased wood cover in logged swales. Rill density ranged from 0.35 to 22 cm m-2 in 

logged swales, and 2.2 to 16 cm m-2 in control swales. Sediment yields also had a wide 

range across treatments and swales in both the 2015 and 2016 water years. Sediment 

yields increased with rill density, and the two variables were highly correlated. Rills 

initiated on bare hillslopes in unlogged swales. In logged swales, rills also started on bare 

undisturbed areas, but more often initiated in high traffic skid trails. Rill that started in 

skid trails were usually concentrated at waterbars and connected to the swale outlet, 

increasing connectivity between hillslopes and channels. Rills from skid trails traveled 

longer distances to the outlet than rills from the other initiation categories. Within the 

logged swales, the percent area in high traffic skid trails was a nearly significant predictor 

of rill density, and the number of waterbars in each swale was a significant predictor of 

rill density. These results suggest that the spatial layout of high traffic skid trails is an 

important factor in determining the effect of logging on rilling and sediment delivery to 

channels. In order to further reduce the occurrence of rills and sediment from reaching 

the stream network, ground cover should be increased on and downslope of skid trails 

and waterbars outlets. 
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3.8 Tables and Figures 

Table 3.1: Rim Fire swale characteristics. Unit, treatment, approximate logging date, 
mean swale slope, slope range, and logging intensity for each swale. 

Unit Swale Treatment Logging 
Date 

Mean 
Slope (%) 

Stumps 
ha-1 

Triple A 1 Logged Nov-Dec 2014 26 76 
Triple A 2 Control Nov-Dec 2014 20 0 
Triple A 3 Logged Nov-Dec 2014 15 84 
Triple A 4 Logged Nov-Dec 2014 29 66 
Triple A 5 Logged Nov-Dec 2014 24 126 
Triple A 6 Logged Nov-Dec 2014 19 108 
Triple A 7 Control Nov-Dec 2014 28 0 

Lower Femmons 8 Control May 2015 19 0 
Lower Femmons 9 Logged May 2015 22 162 
Lower Femmons 10 Logged May 2015 15 95 
Lower Femmons 11 Logged May 2015 27 82 

Upper Femmons 12 Control September 2015 26 0 
Upper Femmons 13 Logged September 2015 20 20 
Upper Femmons 14 Control September 2015 20 0 
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Table 3.2: Linear mixed model structure for Rim Fire measurements. Asterisks indicate 
interaction among the fixed effects. 

Random 
Response variable Fixed effect or covariate effect 

Bulk density Disturbance class Swale nested 
within Unit 

Log transformed Disturbance class Swale nested 
field saturated within Unit 

hydraulic 
conductivity 

Disturbance surface Disturbance class * Year Swale nested 
cover within Unit 

Swale interception Treatment * Unit * Salvage status * Year Swale 
and surface cover 
Square root of rill Treatment * : Unit 

density - Total surface cover, total interception 
cover; surface wood, litter, vegetation, 
and rock cover, number of rills; channel 
density; mean swale slope 
[Logged swales only]: Water Year* 
- % disturbance class 
- Number of waterbars 
- Waterbar distance from outlet 

Log transformed 
sediment yield 

Treatment * Water Year * : 
- Total surface cover, total interception 
cover; surface wood, litter, vegetation, 
and rock cover; number of rills; total rill 

Swale nested 
within Unit 

length; channel density; rill density; mean 
swale slope 
[Logged swales only]: Water Year* 
- % disturbance class 
- Number of waterbars 
- Waterbar distance from outlet 

59
 



 
 

              
           

    
  

  
 
  

 
 

      
      

      
      
      
      
     

      

     
 

 
 

     
     
     

     
     

     
     
 

  
   

 

 
 
 
 
 
 
 
 
 
 
 
 

Table 3.3: Linear mixed effects model results for rill density. N.S. stands for ‘not 
significant” for the treatment interaction. Otherwise the slope coefficients for each 
treatment are listed. 

r2 Marginal/ Standard Treatment 
Covariate P value 

Conditional error Interaction 
Total surface cover % 0.17 0.22/0.22 1.19 N.S. 

Total interception cover % 0.04 0.34/0.34 1.08 N.S. 
Surface wood cover % 0.53 0.10/0.10 1.30 N.S. 
Surface litter cover % 0.31 0.14/0.14 1.27 N.S. 
Surface veg. cover % 0.16 0.17/0.17 1.24 N.S. 
Surface rock cover % 0.96 0/0 1.39 N.S. 

Number of rills 0.15 0.26/0.26 1.15 N.S. 
Channel density (cm m-2) 0.59 0.07/0.07 1.33 N.S 

Significant 
Mean slope % 0.73 0.31/0.31 1.11 Control=0.025 

Logged=-0.103 
Total disturbance % 0.53 0.07/0.07 1.35 -

High traffic skid trails % 0.056 0.43/0.43 1.04 -
Low traffic skid trails % 0.98 0/0 1.41 -

Total skid trail % 0.23 0.33/0.33 1.13 -
Feller buncher tracks % 0.73 0.04/0.04 1.38 -

Mixed traffic % 0.87 0/0 1.41 -
Number of waterbars 0.045 0.50/0.50 0.96 -

Waterbar distance from 
swale outlet (m) 

0.032 0.55/0.55 0.91 
-
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Table 3.4: Linear mixed effects model results for sediment yield. None of the interactions 
between water year and treatment were significant. 

Covariate P value 
r2 

Marginal/ 
Conditional 

Standard 
error 

Total surface cover % 0.11 0.23/0.76 0.53 
Total interception cover % 0.23 0.20/0.75 0.56 

Surface wood cover % 0.18 0.14/0.94 0.28 
Surface litter cover % 0.14 0.29/0.58 0.67 
Surface veg. cover % 0.08 0.20/0.88 0.40 
Surface rock cover % 0.07 0.36/0.74 0.52 

Number of rills 0.08 0.35/0.80 0.49 
Total rill length (m) 0.02 0.54/0.76 0.49 

Channel density (cm m-2) 0.23 0.32/0.80 0.40 
Rill density (cm m-2) 0.004 0.32/0.85 0.49 

Mean slope % 0.68 0.18/0.45 0.83 
Total disturbance % 0.93 0.12/0.80 0.46 

High traffic skid trails % 0.39 0.19/0.63 0.59 
Low traffic skid trails % 0.74 0.17/0.96 0.28 

Total skid trail % 0.74 0.14/0.73 0.51 
Feller buncher tracks % 0.49 0.18/0.65 0.58 

Mixed traffic % 0.99 0.15/0.89 0.33 
Number of waterbars 0.27 0.24/0.68 0.56 

Waterbar distance from 
swale outlet (m) 

0.36 0.22/0.67 0.56 
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Figure 3.1: A feller buncher (top) and a wheeled log skidder retrieving a bundle of trees 
(Bottom). 
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Figure 3.2: 2013 Rim Fire burned area, with study unit locations. Swale locations are 
indicated by blue dots. Burn severity data are from the USDA Forest Service burned area 
reflectance classification data (USDA, 2016). 
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Figure 3.3: Units, swales and rain gage locations within the Rim Fire burned area. 
Swales treatments and timber harvest boundaries are shown by shading and hatching. 
LiDAR DEM from Stavros et al. (2013) and NASA JPL. 
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Figure 3.4: Photos of soil disturbance categories, rills, and channel: high traffic skid 
trails (A, B), waterbar (C), low traffic skid trail (D), mixed traffic (E), feller buncher 
tracks (F); rills (G, H), and ephemeral channel (I). Black arrows indicate downslope 
direction. 
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Figure 3.5: Bulldozer equipped with shanks for subsoiling (Top), close up of "winged" 
shanks from the opposite perspective (Middle), and subsoiled skid trail (Bottom). 
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Figure 3.6: Total skidding disturbance and stumps ha-1 within logged swales. 
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Figure 3.7: Soil disturbance from post-fire salvage logging and disturbance type for each 
swale. Values are percent area of each logged swale. 
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Figure 3.8: Surveyed soil disturbance following logging in November 2014 – January 
2015 in swale ASW 3. Disturbances and waterbars sometimes extend beyond swale 
boundaries. 
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Figure 3.9: Soil bulk density for each disturbance class by depth. Different superscripts 
indicate significant differences (α=0.05) within each depth. Box plots represent median 
(horizontal black bar), 25th and 75th quantiles (box bounds), and 1.5 times the 
interquartile range (whiskers). Dots are individual values. 
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Figure 3.10: Field saturated hydraulic conductivity by disturbance type. Different 
superscript letters indicate significant differences between the means of disturbance types 
(α=0.05). Boxplot characteristics are the same as figure 3.9. 
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Figure 3.11: Mean interception ground cover by cover class and treatment for each unit. 
100 minus the total ground cover is the percent exposed bare soil. 
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Figure 3.12: Mean surface ground cover by cover class and treatment for each unit. 100 
minus the total ground cover is the percent total bare soil. 
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Figure 3.13: Surface cover in disturbed areas across Rim Fire swales. Panel A illustrates 
total surface cover within and across disturbance classes. Boxplot features are the same 
as figure 3.9. Panel B is mean cover type for each disturbance class. 100 minus the total 
surface cover is the percent bare soil. 
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Figure 3.14: Daily cumulative rainfall in the Rim Fire swales. Large storm events are 
visible in Triple A in February, May, and June 2015, while several storm events are 
visible across all three units during the 2015-2016 winter season. 
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Figure 3.15: Monthly rainfall totals for each rain gage. Note that water year 2016 was 
an El Nino year, explaining elevated rainfall. Additionally, no rain gages were installed 
before July 2015 in Lower Femmons, and none before November 2015 in Upper 
Femmons. 
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Figure 3.16: 60-minute maximum rainfall intensity (I60) by rainfall event (A) and 
cumulative total by rainfall event (B) within each unit. The gage in ASW 1 represents 
Triple A and was installed January 2015, FSW 10 represents Lower Femmons and was 
installed July 2015, and FSW 12/13 represents Upper Femmons and was installed in 
November 2015. 
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Figure 3.17: Rainfall characteristics of runoff producing storms by water year. (A) I60, 
(B) I30, (C) I10, (D) total precipitation, (E) storm duration, and (F) precipitation versus 
duration. Boxplot characteristics are the same as Figure 3.9. 
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Figure 3.18: Triple A post-salvage rill networks. 
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Figure 3.19: Examples of features that disconnected rills. Dense vegetation below a skid 
trail in ASW 4 (A), and a stump hole in FSW 8 (B). 
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Figure 3.20: High traffic skid trail in ASW 3 before (A) and after (B) subsoiling. Deep 
rills formed in the subsoiled areas (C). Arrows indicate the down slope direction on the 
skid trails. 
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Figure 3.21: Post-salvage rill networks in Lower and Upper Femmons. 
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Figure 3.22: Rill densities by disturbance class at initiation point for each swale. ASW 3 
is shown before (2015) and after (2016) subsoiling. 
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Figure 3.23: Number of contributing rills in each swale by disturbance class at initiation 
point. ASW 3 is shown before (2015) and after (2016) subsoiling. 
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Figure 3.24: Rill length from initiation point to outlet. Different superscripts indicate 
significant differences (α=0.05). Boxplot characteristics are the same as figure 3.9. 
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Figure 3.25: Sediment yields in each swale by water year. Triple A water year 2015 (A) 
and 2016 (B), Lower Femmons water year 2016 (C), Upper Femons water year 2016 
(D). Panel E shows sediment yields versus rill density for each water year. No sediment 
was produced in Lower Femmons during the part of 2015 water year after logging. 
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Appendices 

Appendix A: November 2015 ground cover at BMDSF by swale. 
Swale Date Vegetation % Litter % Wood % Rock % Bare % 

Channel 1 November 2015 0 49 1 6 45 
Channel 2 November 2015 0 33 2 12 53 
Channel 3 November 2015 0 41 3 7 50 
Channel 4 November 2015 0 13 2 2 84 
Channel 5 November 2015 0 14 2 6 78 
Channel 6 November 2015 0 29 4 1 66 
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Appendix B: Rainfall events in Boggs Mountain Demonstration State Forest, October 2015 to June 2016. Only trace amounts of 
rainfall occurred from October to the rain gage installation. No rainfall was recorded between 17 June 2016 and 30 September 
2016. 

Begin Time End Time Duration
(min) 

Depth 
(mm) 

I10
(mm hr-1) 

I30
(mm hr-1) 

I60
(mm hr-1) 

11/24/2015 7:25 11/24/2015 10:28 184 5.33 6 5 4 
12/3/2015 8:48 12/4/2015 5:43 1256 37.85 15 11 10 
12/6/2015 2:27 12/6/2015 17:22 896 20.83 15 8 7 
12/9/2015 0:10 12/11/2015 9:40 3451 87.63 18 14 10 
12/12/2015 21:25 12/13/2015 18:19 1255 46.99 21 17 15 
12/14/2015 10:53 12/14/2015 10:53 1 0.51 3 1 1 
12/17/2015 22:55 12/19/2015 5:02 1808 39.88 11 8 6 
12/20/2015 7:20 12/22/2015 19:38 3619 72.64 11 9 8 
12/24/2015 3:24 12/24/2015 14:35 672 10.67 8 5 4 
12/28/2015 12:00 12/28/2015 13:24 85 4.57 8 5 4 
12/30/2015 6:53 12/30/2015 12:33 341 0.76 2 1 1 
1/3/2016 7:50 1/3/2016 11:52 243 6.60 6 4 3 
1/3/2016 22:58 1/6/2016 18:32 4055 154.94 12 11 10 
1/8/2016 20:20 1/10/2016 0:38 1699 14.22 5 3 2 
1/11/2016 8:23 1/12/2016 2:08 1066 4.32 3 2 1 
1/12/2016 16:19 1/13/2016 13:53 1295 62.99 15 14 13 
1/14/2016 12:40 1/15/2016 1:33 774 20.07 24 12 6 
1/15/2016 19:30 1/16/2016 9:54 865 19.81 12 5 4 
1/17/2016 0:26 1/17/2016 21:33 1268 87.38 15 12 10 
1/18/2016 16:00 1/19/2016 13:11 1272 48.01 15 13 12 
1/21/2016 21:54 1/23/2016 18:37 2684 75.69 18 11 9 
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1/24/2016  22:59  1/25/2016  10:07  669  5.33  3  3  2  
1/28/2016  12:56  1/28/2016  14:12  77  1.78  5  3  2  
1/28/2016  21:40  1/30/2016  1:09  1650  11.43  6  4  3  
2/2/2016  5:04  2/2/2016  7:49  166  1.52  2  2  1  
2/3/2016  15:40  2/4/2016  7:16  937  2.03  2  1  0  
2/17/2016  13:10  2/19/2016  13:46  2917  63.75  17  13  9  
3/2/2016  23:06  3/2/2016  23:37  32  1.27  5  2  1  
3/3/2016  6:36  3/3/2016  11:47  312  1.27  2  1  1  
3/4/2016  2:32  3/7/2016  11:53  4882  245.36  37  27  23  
3/8/2016  15:36  3/9/2016  16:09  1474  5.84  5  2  2  
3/10/2016  3:44  3/12/2016  14:28  3525  190.50  21  17  13  
3/12/2016  21:54  3/14/2016  2:56  1743  64.52  12  11  9  
3/20/2016  7:31  3/20/2016  15:55  505  20.32  11  8  5  
3/21/2016  3:00  3/21/2016  22:37  1178  41.66  15  10  7  
4/9/2016  11:01  4/9/2016  15:26  266  1.52  3  2  1  
4/10/2016  0:35  4/10/2016  4:13  219  4.06  9  6  4  
4/10/2016  14:41  4/10/2016  14:53  13  0.51  2  1  1  
4/13/2016  22:18  4/14/2016  0:12  115  8.64  11  8  6  
4/21/2016  15:06  4/22/2016  15:12  1447  32.00  18  13  10  
4/27/2016  6:58  4/27/2016  7:04  7  0.76  5  2  1  
4/27/2016  13:38  4/27/2016  14:21  44  2.03  5  3  2  
5/4/2016  6:15  5/4/2016  10:05  231  0.51  2  1  0  
5/5/2016  8:20  5/5/2016  8:44  25  0.76  3  2  1  
5/7/2016  2:05  5/7/2016  8:18  374  1.02  2  1  1  
5/7/2016  20:37  5/8/2016  2:39  363  6.10  11  5  3  
5/21/2016  12:13  5/21/2016  14:49  157  3.05  5  3  2  
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5/23/2016 13:35 5/23/2016 14:16 42 0.51 2 1 1 
5/24/2016 15:33 5/24/2016 17:12 100 1.02 2 1 1 
6/16/2016 15:32 6/16/2016 16:41 70 0.76 3 1 1 
6/17/2016 2:37 6/17/2016 12:00 564 3.56 3 2 1 
6/17/2016 20:27 6/18/2016 1:48 322 6.10 9 5 3 
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Appendix C: Individual rill measurements in BMDSF, January 2016 and May 2016. 

Rill Rill Flowpath Connected to Length to segment Swale Burn severity Survey Date ID type outlet outlet (m) length (m) 
37.0 Channel 1 1_1 Channel Yes 37.0 Low January 2016 
6.1 Channel 2 2_1 Rill Yes 6.1 Low January 2016 
15.4 Channel 3 3_1 Channel Yes 15.4 Moderate January 2016 
5.5 Channel 3 3_2 Rill Yes 16.3 Moderate January 2016 
15.8 Channel 3 3_3 Rill Yes 31.0 Moderate January 2016 
8.5 Channel 3 3_4 Rill Yes 30.9 Moderate January 2016 
8.2 Channel 3 3_5 Rill Yes 23.4 Moderate January 2016 
9.5 Channel 3 3_6 Rill Yes 34.9 Moderate January 2016 
10.2 Channel 3 3_7 Rill Yes 37.4 Moderate January 2016 
4.7 Channel 3 3_8 Rill Yes 26.7 Moderate January 2016 
4.5 Channel 3 3_9 Rill Yes 5.4 Moderate January 2016 
16.2 Channel 4 4_1 Channel Yes 16.2 High January 2016 
26.9 Channel 4 4_2 Rill Yes 43.0 High January 2016 
17.9 Channel 4 4_3 Rill Yes 34.1 High January 2016 
18.1 Channel 4 4_4 Rill Yes 41.9 High January 2016 
12.8 Channel 4 4_5 Rill Yes 42.3 High January 2016 
9.5 Channel 4 4_6 Rill Yes 40.5 High January 2016 
10.6 Channel 4 4_7 Rill Yes 38.3 High January 2016 
16.7 Channel 4 4_8 Rill Yes 25.7 High January 2016 
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24.6 Channel 5 
4.9 Channel 5 
26.2 Channel 5 
33.2 Channel 5 
8.4 Channel 5 
8.2 Channel 5 
11.4 Channel 5 
9.9 Channel 5 
4.2 Channel 5 
2.5 Channel 5 
8.2 Channel 5 
31.4 Channel 6 
17.7 Channel 6 
7.5 Channel 6 
6.5 Channel 6 
3.4 Channel 6 
46.0 Channel 1 
27.1 Channel 1 
7.7 Channel 2 
20.7 Channel 3 
18.6 Channel 3 
2.6 Channel 3 
23.9 Channel 3 
4.1 Channel 3 
6.7 Channel 3 
2.8 Channel 3 

5_1 
5_10 
5_11 
5_2 
5_3 
5_4 
5_5 
5_6 
5_7 
5_8 
5_9 
6_1 
6_2 
6_3 
6_4 
6_5 
1_0 
1_1 
2_1 
3_1 
3_0 
3_2 
3_3 
3_4 
3_5 
3_6 

Channel Yes 24.6 High 
Rill Yes 11.5 High 
Rill No 0.0 High 
Rill Yes 57.7 High 
Rill Yes 57.0 High 
Rill Yes 58.6 High 
Rill Yes 49.5 High 
Rill Yes 33.2 High 
Rill Yes 27.5 High 
Rill Yes 10.0 High 
Rill Yes 16.7 High 

Channel Yes 31.4 Moderate 
Rill Yes 42.5 Moderate 
Rill Yes 36.5 Moderate 
Rill Yes 36.1 Moderate 
Rill Yes 37.6 Moderate 

Channel Yes 46.0 Low 
Rill Yes 73.2 Low 
Rill Yes 7.7 Low 
Rill Yes 42.0 Moderate 

Channel Yes 18.6 Moderate 
Rill Yes 17.8 Moderate 
Rill Yes 38.0 Moderate 
Rill Yes 28.0 Moderate 
Rill Yes 34.8 Moderate 
Rill Yes 16.3 Moderate 

January 2016
 
January 2016
 
January 2016
 
January 2016
 
January 2016
 
January 2016
 
January 2016
 
January 2016
 
January 2016
 
January 2016
 
January 2016
 
January 2016
 
January 2016
 
January 2016
 
January 2016
 
January 2016
 

May 2016
 
May 2016
 
May 2016
 
May 2016
 
May 2016
 
May 2016
 
May 2016
 
May 2016
 
May 2016
 
May 2016
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19.6 Channel 3 
15.6 Channel 3 
22.6 Channel 3 
8.9 Channel 3 
6.0 Channel 3 
24.5 Channel 4 
28.2 Channel 4 
20.5 Channel 4 
21.0 Channel 4 
26.7 Channel 4 
39.7 Channel 4 
6.6 Channel 4 
20.5 Channel 4 
10.0 Channel 4 
17.6 Channel 4 
13.7 Channel 4 
13.2 Channel 4 
12.3 Channel 4 
10.5 Channel 4 
4.2 Channel 4 
7.8 Channel 4 
15.4 Channel 4 
5.5 Channel 4 
29.3 Channel 4 
15.5 Channel 4 
19.1 Channel 4 

3_7 
3_8 
3_9 
3_10 
3_11 
4_0 
4_1 
4_2 
4_3 
4_4 
4_5 
4_6 
4_7 
4_8 
4_9 
4_10 
4_12 
4_11 
4_13 
4_14 
4_15 
4_16 
4_17 
4_18 
4_19 
4_20 

Rill Yes 32.6 
Rill Yes 41.5 
Rill Yes 35.4 
Rill Yes 42.0 
Rill Yes 28.7 

Channel Yes 24.5 
Rill Yes 93.5 
Rill Yes 109.1 
Rill Yes 83.2 
Rill Yes 32.5 
Rill Yes 46.4 
Rill Yes 29.0 
Rill Yes 28.3 
Rill Yes 21.7 
Rill Yes 42.9 
Rill Yes 93.5 
Rill Yes 44.3 
Rill Yes 42.3 
Rill Yes 45.2 
Rill Yes 40.2 
Rill Yes 46.8 
Rill Yes 52.3 
Rill Yes 51.5 
Rill Yes 61.1 
Rill Yes 50.2 
Rill Yes 109.1 

Moderate May 2016 
Moderate May 2016 
Moderate May 2016 
Moderate May 2016 
Moderate May 2016 

High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
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23.7 Channel 4 
11.6 Channel 4 
14.6 Channel 4 
6.4 Channel 4 
15.5 Channel 4 
13.6 Channel 4 
5.2 Channel 4 
10.6 Channel 4 
10.7 Channel 4 
6.3 Channel 4 
35.9 Channel 4 
7.4 Channel 4 
8.2 Channel 4 
15.2 Channel 4 
32.6 Channel 4 
10.8 Channel 4 
49.0 Channel 4 
48.5 Channel 4 
10.5 Channel 4 
18.3 Channel 5 
15.5 Channel 5 
23.0 Channel 5 
30.0 Channel 5 
3.5 Channel 5 
5.3 Channel 5 
3.2 Channel 5 

4_21 
4_22 
4_23 
4_24 
4_25 
4_26 
4_27 
4_28 
4_29 
4_39 
4_30 
4_31 
4_32 
4_33 
4_34 
4_35 
4_36 
4_37 
4_38 
5_1 
5_2 
5_0 
5_3 
5_4 
5_5 
5_6 

Rill Yes 52.3 
Rill Yes 39.1 
Rill Yes 41.0 
Rill Yes 32.8 
Rill Yes 40.3 
Rill Yes 30.6 
Rill Yes 25.0 
Rill Yes 25.7 
Rill No 0.0 
Rill Yes 21.0 
Rill Yes 83.2 
Rill Yes 16.7 
Rill Yes 17.0 
Rill Yes 23.6 
Rill Yes 38.0 
Rill Yes 15.6 
Rill Yes 47.9 
Rill Yes 50.7 
Rill Yes 11.9 
Rill Yes 52.8 
Rill Yes 81.9 
Rill Yes 24.2 
Rill Yes 32.5 
Rill Yes 4.9 
Rill Yes 7.9 
Rill Yes 6.8 

High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
High May 2016 
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7.0 Channel 5 
5.8 Channel 5 
7.0 Channel 5 
9.3 Channel 5 
34.0 Channel 5 
6.1 Channel 5 
27.4 Channel 5 
15.3 Channel 5 
6.5 Channel 5 
44.3 Channel 5 
14.7 Channel 5 
30.0 Channel 5 
14.4 Channel 5 
10.0 Channel 5 
5.0 Channel 5 
7.1 Channel 5 
37.4 Channel 5 
39.5 Channel 6 
5.0 Channel 6 
5.1 Channel 6 
10.6 Channel 6 

5_7 
5_8 
5_9 
5_10 
5_11 
5_12 
5_13 
5_14 
5_15 
5_16 
5_17 
5_18 
5_19 
5_20 
5_21 
5_22 
5_23 
6_0 
6_1 
6_2 
6_3 

Rill Yes 27.0 High 
Rill Yes 27.9 High 
Rill Yes 29.6 High 
Rill Yes 52.8 High 
Rill Yes 56.0 High 
Rill Yes 38.8 High 
Rill Yes 51.9 High 
Rill Yes 49.6 High 
Rill Yes 47.4 High 
Rill Yes 80.6 High 
Rill Yes 76.9 High 
Rill Yes 81.0 High 
Rill Yes 81.2 High 
Rill Yes 76.8 High 
Rill Yes 81.9 High 
Rill Yes 57.8 High 

Channel Yes 37.4 High 
Channel Yes 39.5 Moderate 

Rill Yes 40.3 Moderate 
Rill Yes 39.5 Moderate 
Rill Yes 39.5 Moderate 

May 2016 
May 2016 
May 2016 
May 2016 
May 2016 
May 2016 
May 2016 
May 2016 
May 2016 
May 2016 
May 2016 
May 2016 
May 2016 
May 2016 
May 2016 
May 2016 
May 2016 
May 2016 
May 2016 
May 2016 
May 2016 



 

	
 

 

 
           

 
       

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

 
 
 
 

Appendix D: Sediment yield at BMDSF by clean out date. 

Swale Clean out date Yield (Mg ha-1) 
Channel 1 3/4/2016 0.0 
Channel 2 3/4/2016 0.72
Channel 3 3/4/2016 0.05 
Channel 4 3/4/2016 5.15
Channel 5 3/4/2016 2.56 
Channel 6 3/4/2016 1.26 
Channel 1 4/8/2016 0.0 
Channel 2 4/8/2016 0.0 
Channel 3 4/8/2016 0.75
Channel 4 4/8/2016 9.87 
Channel 5 4/8/2016 10.4 
Channel 6 4/8/2016 2.09 
Channel 1 6/1/2016 0.05 
Channel 2 6/1/2016 0.49 
Channel 3 6/1/2016 0.04
Channel 4 6/1/2016 0.20 
Channel 5 6/1/2016 0.45 
Channel 6 6/1/2016 0.08 

104 



 

	
 

 

 
                   

    
 

     
   

  
   

 
  

 
  

 
  

 
  

  

 
 

           
           
           
           
           
           
           
           
           
           
           
           
           
           

 
 
 
 
 

Appendix E: Post-salvage logging disturbance in the Rim Fire swales. Femmons is abbreviated by “FSW” for the Lower and 
Upper units. 

Swale Treatment Unit High traffic 
skid trail % 

Low traffic 
skid trail % 

Feller 
Buncher % 

Mixed 
traffic % 

2016 
Subsoil % 

Waterbar 
distance to 
outlet (m) 

Total 
waterbars 

1 Logged Triple A 14 8 0 4 0 61 2 
2 Control Triple A 0 0 0 0 0 0 0 
3 Logged Triple A 21 4 1 18 13 35 4 
4 Logged Triple A 9 11 3 18 0 77 2 
5 Logged Triple A 28 11 1 0 0 29 4 
6 Logged Triple A 14 13 2 0 0 48 3 
7 Control Triple A 0 0 0 0 0 0 0 
8 Control Lower FSW 0 0 0 0 0 0 0 
9 Logged Lower FSW 15 0 6 0 0 32 3 
10 Logged Lower FSW 29 0 1 26 12 69 3 
11 Logged Lower FSW 12 1 4 0 0 72 2 
12 Control Upper FSW 0 0 0 0 0 0 0 
13 Logged Upper FSW 8 1 0 0 0 85 2 
14 Control Upper FSW 0 0 0 0 0 0 0 
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Appendix F: Post-salvage bulk density values for each disturbance class and swale in the Rim Fire. 

Swale Disturbance class Bulk density (g cm-3) Depth Unit 

106 

ASW 1 High Traffic Skid 0.97 0-5 cm Triple A 
ASW 1 Low Traffic Skid 1.21 0-5 cm Triple A 
ASW 1 Feller Buncher 1.27 0-5 cm Triple A 
ASW 1 Mixed 1.36 0-5 cm Triple A 
ASW 1 Untrafficked 1.23 0-5 cm Triple A 
ASW 2 Untrafficked 1.28 0-5 cm Triple A 
ASW 3 High Traffic Skid 1.33 0-5 cm Triple A 
ASW 3 Low Traffic Skid 1.21 0-5 cm Triple A 
ASW 3 Feller Buncher 1.36 0-5 cm Triple A 
ASW 3 Mixed 1.31 0-5 cm Triple A 
ASW 3 Untrafficked 1.08 0-5 cm Triple A 
ASW 4 High Traffic Skid 1.22 0-5 cm Triple A 
ASW 4 Low Traffic Skid 1.46 0-5 cm Triple A 
ASW 4 Feller Buncher 1.45 0-5 cm Triple A 
ASW 4 Mixed 1.45 0-5 cm Triple A 
ASW 4 Untrafficked 1.13 0-5 cm Triple A 
ASW 5 High Traffic Skid 1.68 0-5 cm Triple A 
ASW 5 Low Traffic Skid 1.50 0-5 cm Triple A 
ASW 5 Feller Buncher 1.41 0-5 cm Triple A 
ASW 5 Mixed 1.60 0-5 cm Triple A 
ASW 5 Untrafficked 1.24 0-5 cm Triple A 
ASW 6 High Traffic Skid 1.50 0-5 cm Triple A 
ASW 6 Low Traffic Skid 1.28 0-5 cm Triple A 
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ASW 6 Feller Buncher 
ASW 6 Untrafficked 
ASW 7 Untrafficked 
FSW 8 Untrafficked 
FSW 9 High Traffic Skid 
FSW 9 Feller Buncher 
FSW 9 Untrafficked 
FSW 10 High Traffic Skid 
FSW 10 Feller Buncher 
FSW 10 Mixed 
FSW 10 Untrafficked 
FSW 11 High Traffic Skid 
FSW 11 Low Traffic Skid 
FSW 11 Feller Buncher 
FSW 11 Mixed 
FSW 11 Untrafficked 
FSW 13 Low Traffic Skid 
FSW 13 High Traffic Skid 
FSW 13 High Traffic Skid 
ASW 1 High Traffic Skid 
ASW 1 Low Traffic Skid 
ASW 1 Feller Buncher 
ASW 1 Mixed 
ASW 1 Untrafficked 
ASW 2 Untrafficked 
ASW 3 High Traffic Skid 

1.27 
1.20 
1.12 
1.20 
1.59 
1.18 
1.15 
1.38 
NA 
1.11 
1.15 
1.15 
1.01 
1.17 
1.16 
1.01 
1.12 
1.13 
1.13 
1.42 
1.26 
1.15 
1.39 
1.31 
1.39 
1.49 

0-5 cm 
0-5 cm 
0-5 cm 
0-5 cm 
0-5 cm 
0-5 cm 
0-5 cm 
0-5 cm 
0-5 cm 
0-5 cm 
0-5 cm 
0-5 cm 
0-5 cm 
0-5 cm 
0-5 cm 
0-5 cm 
0-5 cm 
0-5 cm 
0-5 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 

Triple A
 
Triple A
 
Triple A
 

Lower Femmons
 
Lower Femmons
 
Lower Femmons
 
Lower Femmons
 
Lower Femmons
 
Lower Femmons
 
Lower Femmons
 
Lower Femmons
 
Lower Femmons
 
Lower Femmons
 
Lower Femmons
 
Lower Femmons
 
Lower Femmons
 
Upper Femmons
 
Upper Femmons
 
Upper Femmons
 

Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 



 

	
 

 

          
         
        
        
          
          
         
        
        
          
          
         
        
        
          
          
         
        
        
        
          
         
        
          
         
        

108 

ASW 3 Low Traffic Skid 
ASW 3 Feller Buncher 
ASW 3 Mixed 
ASW 3 Untrafficked 
ASW 4 High Traffic Skid 
ASW 4 Low Traffic Skid 
ASW 4 Feller Buncher 
ASW 4 Mixed 
ASW 4 Untrafficked 
ASW 5 High Traffic Skid 
ASW 5 Low Traffic Skid 
ASW 5 Feller Buncher 
ASW 5 Mixed 
ASW 5 Untrafficked 
ASW 6 High Traffic Skid 
ASW 6 Low Traffic Skid 
ASW 6 Feller Buncher 
ASW 6 Untrafficked 
ASW 7 Untrafficked 
FSW 8 Untrafficked 
FSW 9 High Traffic Skid 
FSW 9 Feller Buncher 
FSW 9 Untrafficked 
FSW 10 High Traffic Skid 
FSW 10 Feller Buncher 
FSW 10 Mixed 

1.42 
1.31 
1.46 
1.20 
1.69 
1.50 
1.40 
1.55 
1.21 
1.65 
1.62 
1.39 
1.58 
1.26 
1.59 
1.36 
1.39 
1.17 
1.22 
1.20 
1.55 
1.44 
1.08 
1.38 
1.27 
1.25 

5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 
5-10 cm 

Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 

Lower Femmons
 
Lower Femmons
 
Lower Femmons
 
Lower Femmons
 
Lower Femmons
 
Lower Femmons
 
Lower Femmons
 



 

	
 

 

        
          
          
         
        
        
          
          
          

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FSW 10 Untrafficked 1.19 5-10 cm Lower Femmons 
FSW 11 High Traffic Skid 1.23 5-10 cm Lower Femmons 
FSW 11 Low Traffic Skid 1.12 5-10 cm Lower Femmons 
FSW 11 Feller Buncher 1.34 5-10 cm Lower Femmons 
FSW 11 Mixed 1.23 5-10 cm Lower Femmons 
FSW 11 Untrafficked 1.26 5-10 cm Lower Femmons 
FSW 13 Low Traffic Skid 1.07 5-10 cm Upper Femmons 
FSW 13 High Traffic Skid 1.12 5-10 cm Upper Femmons 
FSW 13 High Traffic Skid 1.28 5-10 cm Upper Femmons 
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Appendix G: Post-salvage field saturated hydraulic conductivity (KFS) measurements for each disturbance class and swale in the 
Rim Fire. 

Swale KFS (cm s-1) Treatment Unit 
FSW8 0.0077 Untrafficked Lower Femmons 
FSW9 0.0118 Untrafficked Lower Femmons 
FSW9 0.0017 Feller Buncher Lower Femmons 
FSW9 0.0001 High Traffic Skid Lower Femmons 
FSW10 0.0120 Untrafficked Lower Femmons 
FSW10 0.0017 Feller Buncher Lower Femmons 
FSW10 0.0003 High Traffic Skid Lower Femmons 
FSW10 0.0007 Mixed Lower Femmons 
FSW11 0.0470 Untrafficked Lower Femmons 
FSW11 0.0032 Feller Buncher Lower Femmons 
FSW11 0.0004 High Traffic Skid Lower Femmons 
FSW11 0.0004 Low Traffic Skid Lower Femmons 
FSW11 0.0015 Mixed Lower Femmons 
ASW1 0.0104 Untrafficked Triple A 
ASW1 0.0013 Low Traffic Skid Triple A 
ASW1 0.0017 High Traffic Skid Triple A 
ASW1 0.0039 Mixed Triple A 
ASW2 0.0087 Untrafficked Triple A 
ASW3 0.0055 Untrafficked Triple A 
ASW3 0.0003 Feller Buncher Triple A 
ASW3 0.0042 Low Traffic Skid Triple A 
ASW3 0.0003 High Traffic Skid Triple A 
ASW3 0.0021 Mixed Triple A 
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ASW4 0.0057 
ASW4 0.0035 
ASW4 0.0047 
ASW4 0.0008 
ASW4 0.0012 
ASW5 0.0100 
ASW5 0.0032 
ASW5 0.0076 
ASW5 0.0005 
ASW5 0.0004 
ASW6 0.0134 
ASW6 0.0025 
ASW6 0.0033 111 ASW6 0.0003 
ASW7 0.0069 
FSW14 0.0293 
FSW14 0.0272 
FSW13 0.0033 
FSW13 0.0022 
FSW13 0.0046 
FSW12 0.0034 
FSW12 0.0098 

Untrafficked
 
Feller Buncher
 

Low Traffic Skid
 
High Traffic Skid
 

Mixed
 
Untrafficked
 

Feller Buncher
 
Low Traffic Skid
 
High Traffic Skid
 

Mixed
 
Untrafficked
 

Feller Buncher
 
Low Traffic Skid
 
High Traffic Skid
 

Untrafficked
 
Untrafficked
 
Untrafficked
 

Low Traffic Skid
 
High Traffic Skid
 

Untrafficked
 
Untrafficked
 
Untrafficked
 

Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 

Upper Femmons
 
Upper Femmons
 
Upper Femmons
 
Upper Femmons
 
Upper Femmons
 
Upper Femmons
 
Upper Femmons
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Appendix H: Post-salvage disturbance class percent surface cover. 

Total Year Unit Swale Treatment Soil Litter Veg Wood Rock Cover 
2015 Triple A ASW 1 Mixed Traffic 23 30 14 33 0 77 
2015 Triple A ASW 1 Low Traffic Skid 29 35 19 10 7 71 
2015 Triple A ASW 1 High Traffic Skid 51 38 5 5 1 49 
2015 Triple A ASW 3 Mixed Traffic 6 35 0 59 1 94 
2015 Triple A ASW 3 Feller buncher 59 19 5 17 0 41 
2015 Triple A ASW 3 Low Traffic Skid 64 20 4 13 0 36 
2015 Triple A ASW 3 High Traffic Skid 66 24 1 8 0 34 
2015 Triple A ASW 4 Mixed Traffic 29 32 21 19 0 71 
2015 Triple A ASW 4 Feller buncher 38 38 18 6 0 62 
2015 Triple A ASW 4 Low Traffic Skid 57 26 13 4 0 43 
2015 Triple A ASW 4 High Traffic Skid 75 17 1 7 0 25 
2015 Triple A ASW 5 Mixed Traffic 66 10 21 4 0 34 
2015 Triple A ASW 5 Feller buncher 56 11 22 11 0 44 
2015 Triple A ASW 5 Low Traffic Skid 73 9 8 10 0 27 
2015 Triple A ASW 5 High Traffic Skid 62 20 5 14 0 38 
2015 Triple A ASW 6 Feller buncher 53 18 14 15 0 47 
2015 Triple A ASW 6 Low Traffic Skid 54 16 15 15 0 46 
2015 Triple A ASW 6 High Traffic Skid 67 17 11 5 0 33 
2015 Lower Femmons FSW 9 Feller buncher 51 47 0 1 0 49 
2015 Lower Femmons FSW 9 High Traffic Skid 67 29 1 4 0 33 
2015 Lower Femmons FSW 9 Untrafficked 48 49 1 2 0 52 
2015 Lower Femmons FSW 10 Mixed Traffic 57 25 1 17 0 43 
2015 Lower Femmons FSW 10 Feller buncher 65 32 1 2 0 35 
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2015 Lower Femmons FSW 10 High Traffic Skid 73 24 0 3 0 27 
2015 Lower Femmons FSW 10 Untrafficked 39 59 0 2 0 61 
2015 Lower Femmons FSW 11 Mixed Traffic 42 40 0 18 0 58 
2015 Lower Femmons FSW 11 Feller buncher 43 51 2 4 0 57 
2015 Lower Femmons FSW 11 Low Traffic Skid 62 36 2 0 0 38 
2015 Lower Femmons FSW 11 High Traffic Skid 59 37 0 4 0 41 
2015 Lower Femmons FSW 11 Untrafficked 19 79 0 2 0 81 
2015 Upper Femmons FSW 13 Low Traffic Skid 69 18 2 9 2 31 
2015 Upper Femmons FSW 13 High Traffic Skid 96 3 0 0 0 4 
2016 Triple A ASW 1 Mixed Traffic 32 21 6 20 21 68 
2016 Triple A ASW 1 Low Traffic Skid 35 19 24 15 6 65 
2016 Triple A ASW 1 High Traffic Skid 57 20 7 12 4 43 
2016 Triple A ASW 1 Untrafficked 47 21 25 4 2 53 
2016 Triple A ASW 3 Mixed Traffic 39 28 3 28 3 61 
2016 Triple A ASW 3 Feller buncher 39 16 29 16 0 61 
2016 Triple A ASW 3 Low Traffic Skid 58 16 9 17 0 42 
2016 Triple A ASW 3 High Traffic Skid 74 14 2 10 0 26 
2016 Triple A ASW 3 Subsoil 91 3 1 2 3 9 
2016 Triple A ASW 3 Untrafficked 29 20 39 12 0 71 
2016 Triple A ASW 4 Mixed Traffic 22 26 9 43 0 78 
2016 Triple A ASW 4 Feller buncher 29 15 45 11 0 71 
2016 Triple A ASW 4 Low Traffic Skid 46 23 30 1 0 54 
2016 Triple A ASW 4 High Traffic Skid 69 22 4 5 0 31 
2016 Triple A ASW 4 Untrafficked 29 27 43 1 0 71 
2016 Triple A ASW 5 Feller buncher 53 9 33 5 0 47 
2016 Triple A ASW 5 Low Traffic Skid 68 9 17 6 0 32 
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2016 Triple A ASW 5 High Traffic Skid 85 8 2 5 0 15 
2016 Triple A ASW 5 Untrafficked 41 13 43 2 0 59 
2016 Triple A ASW 6 Feller buncher 53 5 19 23 0 47 
2016 Triple A ASW 6 Low Traffic Skid 55 11 29 4 0 45 
2016 Triple A ASW 6 High Traffic Skid 82 9 3 6 0 18 
2016 Triple A ASW 6 Untrafficked 43 9 34 14 0 57 
2016 Lower Femmons FSW 9 Feller buncher 72 14 9 4 0 28 
2016 Lower Femmons FSW 9 High Traffic Skid 55 31 2 11 0 45 
2016 Lower Femmons FSW 9 Untrafficked 47 9 39 5 0 53 
2016 Lower Femmons FSW 10 Mixed Traffic 61 14 11 14 0 39 
2016 Lower Femmons FSW 10 Feller buncher 57 34 0 9 0 43 
2016 Lower Femmons FSW 10 High Traffic Skid 76 11 1 12 1 25 
2016 Lower Femmons FSW 10 Untrafficked 29 11 58 2 0 71 
2016 Lower Femmons FSW 10 Subsoil 89 4 0 7 0 11 
2016 Lower Femmons FSW 11 Mixed Traffic 48 9 3 40 0 52 
2016 Lower Femmons FSW 11 Feller buncher 48 25 21 7 0 52 
2016 Lower Femmons FSW 11 Low Traffic Skid 74 13 9 4 0 26 
2016 Lower Femmons FSW 11 High Traffic Skid 60 20 3 17 0 40 
2016 Lower Femmons FSW 11 Untrafficked 5 6 88 1 0 95 
2016 Upper Femmons FSW 13 Low Traffic Skid 81 8 1 7 4 19 
2016 Upper Femmons FSW 13 High Traffic Skid 87 3 0 4 7 14 
2016 Upper Femmons FSW 13 Untrafficked 82 1 7 0 9 18 
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Appendix I: Swale surface and interception percent cover by year in the Rim Fire. Femmons is abbreviated by “FSW”. “Status” 
refers to if the survey was pre or post salvage. 

Cover Total Date Status Unit Swale Treatment Soil Litter Veg Wood Rock Category Cover 
2014 08 Pre Triple A ASW 1 Logged Interception 49 23 17 3 8 51 
2014 08 Pre Triple A ASW 2 Control Interception 57 17 23 1 2 43 
2014 08 Pre Triple A ASW 3 Logged Interception 56 26 16 1 0 44 
2014 08 Pre Triple A ASW 4 Logged Interception 43 35 19 2 1 57 
2014 08 Pre Triple A ASW 5 Logged Interception 54 22 20 4 0 46 
2014 08 Pre Triple A ASW 6 Logged Interception 65 13 20 2 0 35 
2014 08 Pre Triple A ASW 7 Control Interception 79 12 7 2 1 21 
2014 08 Pre Lower FSW FSW 8 Control Interception 63 15 17 4 1 37 
2014 08 Pre Lower FSW FSW 9 Logged Interception 73 11 15 1 0 27 
2014 08 Pre Lower FSW FSW 10 Logged Interception 64 12 17 6 0 36 
2014 08 Pre Lower FSW FSW 11 Logged Interception 34 32 31 3 0 66 
2014 08 Pre Upper FSW FSW 12 Control Interception 70 17 2 4 7 30 
2014 08 Pre Upper FSW FSW 13 Logged Interception 80 9 5 2 4 20 
2014 08 Pre Upper FSW FSW 14 Control Interception 68 10 18 3 1 32 
2015 05 Post Triple A ASW 1 Logged Interception 24 26 28 17 5 76 
2015 05 Post Triple A ASW 2 Control Interception 28 8 63 1 0 72 
2015 05 Post Triple A ASW 3 Logged Interception 57 3 17 23 0 43 
2015 05 Post Triple A ASW 4 Logged Interception 22 31 31 17 0 78 
2015 05 Post Triple A ASW 5 Logged Interception 34 20 28 18 0 66 
2015 05 Post Triple A ASW 6 Logged Interception 35 11 42 12 0 65 
2015 05 Post Triple A ASW 7 Control Interception 67 12 16 5 1 33 
2015 05 Pre Lower FSW FSW 8 Control Interception 58 3 35 3 0 42 
2015 05 Pre Lower FSW FSW 9 Logged Interception 57 7 33 3 0 43 
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2015 05 Pre 
2015 05 Pre 
2015 05 Pre 
2015 05 Pre 
2015 05 Pre 
2015 07 Post 
2015 07 Post 
2015 07 Post 
2015 07 Post 
2016 05 Post 
2016 05 Post 
2016 05 Post 
2016 05 Post 
2016 05 Post 
2016 05 Post 
2016 05 Post 
2016 05 Post 
2016 05 Post 
2016 05 Post 
2016 05 Post 
2016 05 Post 
2016 05 Post 
2016 05 Post 
2014 08 Pre 
2014 08 Pre 
2014 08 Pre 

Lower FSW 
Lower FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Triple A 
Triple A 
Triple A 
Triple A 
Triple A 
Triple A 
Triple A 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Triple A 
Triple A 
Triple A 

FSW 10
 
FSW 11
 
FSW 12
 
FSW 13
 
FSW 14
 
FSW 8
 
FSW 9
 
FSW 10
 
FSW 11
 
ASW 1
 
ASW 2
 
ASW 3
 
ASW 4
 
ASW 5
 
ASW 6
 
ASW 7
 
FSW 8
 
FSW 9
 
FSW 10
 
FSW 11
 
FSW 12
 
FSW 13
 
FSW 14
 
ASW 1
 
ASW 2
 
ASW 3
 

Logged 
Logged 
Control 
Logged 
Control 
Control 
Logged 
Logged 
Logged 
Logged 
Control 
Logged 
Logged 
Logged 
Logged 
Control 
Control 
Logged 
Logged 
Logged 
Control 
Logged 
Control 
Logged 
Control 
Logged 

Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 
Interception
 

Surface
 
Surface
 
Surface
 

49 
NA 
82 
70 
45 
39 
48 
51 
29 
20 
7 
22 
11 
10 
22 
47 
26 
30 
31 
12 
68 
49 
34 
61 
77 
66 

7
 
NA
 
12
 
13
 
38
 
13
 
12
 
14
 
14
 
13
 
8
 
6
 
15
 
15
 
5
 
11
 
9
 
10
 
15
 
6
 
1
 
4
 
25
 
27
 
19
 
31
 

40 
NA 
3 
15 
11 
46 
31 
18 
44 
46 
72 
62 
61 
63 
64 
27 
60 
48 
33 
68 
14 
28 
26 
0 
1 
1 

4
 
NA
 
1
 
2
 
5
 
2
 
9
 
16
 
13
 
16
 
12
 
10
 
13
 
12
 
9
 
14
 
5
 
12
 
21
 
14
 
5
 
12
 
5
 
3
 
1
 
1
 

0 51 
NA NA 
0 18 
1 30 
1 55 
0 61 
0 52 
0 49 
0 71 
5 80 
1 93 
0 78 
0 89 
0 90 
0 78 
2 53 
0 74 
0 70 
1 69 
0 88 
12 32 
8 51 
10 66 
8 39 
2 23 
0 34 
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2014 08 Pre 
2014 08 Pre 
2014 08 Pre 
2014 08 Pre 
2014 08 Pre 
2014 08 Pre 
2014 08 Pre 
2014 08 Pre 
2014 08 Pre 
2014 08 Pre 
2014 08 Pre 
2015 05 Post 
2015 05 Post 
2015 05 Post 
2015 05 Post 
2015 05 Post 
2015 05 Post 
2015 05 Post 
2015 05 Pre 
2015 05 Pre 
2015 05 Pre 
2015 05 Pre 
2015 05 Pre 
2015 05 Pre 
2015 05 Pre 
2015 07 Post 

Triple A 
Triple A 
Triple A 
Triple A 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Triple A 
Triple A 
Triple A 
Triple A 
Triple A 
Triple A 
Triple A 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Lower FSW 

ASW 4
 
ASW 5
 
ASW 6
 
ASW 7
 
FSW 8
 
FSW 9
 
FSW 10
 
FSW 11
 
FSW 12
 
FSW 13
 
FSW 14
 
ASW 1
 
ASW 2
 
ASW 3
 
ASW 4
 
ASW 5
 
ASW 6
 
ASW 7
 
FSW 8
 
FSW 9
 
FSW 10
 
FSW 11
 
FSW 12
 
FSW 13
 
FSW 14
 
FSW 8
 

Logged 
Logged 
Logged 
Control 
Control 
Logged 
Logged 
Logged 
Control 
Logged 
Control 
Logged 
Control 
Logged 
Logged 
Logged 
Logged 
Control 
Control 
Logged 
Logged 
Logged 
Control 
Logged 
Control 
Control 

Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 
Surface 

54 
68 
80 
85 
78 
85 
83 
56 
73 
84 
84 
39 
70 
65 
42 
45 
76 
83 
94 
90 
79 
NA 
85 
83 
51 
65 

42 
29 
17 
12 
17 
12 
14 
41 
17 
10 
12 
34 
12 
4 
42 
36 
12 
12 
3 
7 
13 
NA 
14 
14 
43 
24 

1
 
1
 
1
 
1
 
2
 
1
 
0
 
2
 
1
 
1
 
2
 
5
 
17
 
8
 
0
 
0
 
0
 
0
 
0
 
0
 
4
 

NA
 
0
 
0
 
0
 
7
 

2
 
1
 
2
 
1
 
2
 
2
 
3
 
2
 
1
 
1
 
1
 
17
 
1
 
23
 
17
 
18
 
12
 
5
 
3
 
3
 
3
 

NA
 
1
 
2
 
5
 
3
 

1 46 
0 32 
0 20 
1 15 
1 22 
0 15 
0 17 
0 44 
7 27 
4 16 
1 16 
5 61 
0 30 
0 35 
0 58 
0 55 
0 24 
1 17 
0 6 
0 10 
0 21 

NA NA 
0 15 
1 17 
1 49 
0 35 
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2015 07 Post Lower FSW FSW 9 Logged Surface 65 19 7 9 0 35 
2015 07 Post Lower FSW FSW 10 Logged Surface 63 18 5 14 0 37 
2015 07 Post Lower FSW FSW 11 Logged Surface 37 39 10 14 0 63 
2016 05 Post Triple A ASW 1 Logged Surface 43 24 12 15 7 57 
2016 05 Post Triple A ASW 2 Control Surface 31 31 28 8 1 69 
2016 05 Post Triple A ASW 3 Logged Surface 45 20 25 10 0 55 
2016 05 Post Triple A ASW 4 Logged Surface 38 29 20 13 0 62 
2016 05 Post Triple A ASW 5 Logged Surface 47 21 19 13 0 53 
2016 05 Post Triple A ASW 6 Logged Surface 50 10 32 8 0 50 
2016 05 Post Triple A ASW 7 Control Surface 75 10 4 9 2 25 
2016 05 Post Lower FSW FSW 8 Control Surface 53 15 26 6 0 47 
2016 05 Post Lower FSW FSW 9 Logged Surface 57 12 17 14 0 43 
2016 05 Post Lower FSW FSW 10 Logged Surface 47 17 16 19 1 53 
2016 05 Post Lower FSW FSW 11 Logged Surface 31 9 46 13 0 69 
2016 05 Post Upper FSW FSW 12 Control Surface 80 1 4 2 13 20 
2016 05 Post Upper FSW FSW 13 Logged Surface 70 4 7 10 9 30 
2016 05 Post Upper FSW FSW 14 Control Surface 53 25 8 3 10 47 
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Appendix J: Precipitation data for Rim Fire swale rain gages by event. Femmons is abbreviated by “FSW”. 

Unit Swale Begin End Duration 
(min) 

Depth 
(mm) 

I10
(mm hr-1) 

I30
(mm hr-1) 

I60
(mm hr-1) 

Triple A ASW 1 1/27/15 1/27/2015 234 3.302 17 16 15 
Triple A ASW 1 2/6/15 2/7/2015 1740 49.784 15 12 11 
Triple A ASW 1 2/8/15 2/9/2015 1269 44.704 9 6 5 
Triple A ASW 1 2/22/15 2/22/2015 144 2.032 20 13 11 
Triple A ASW 1 2/27/15 2/28/2015 1236 6.604 8 5 3 
Triple A ASW 1 3/1/15 3/1/2015 19 0.508 12 5 5 
Triple A ASW 1 3/2/15 3/2/2015 243 5.334 12 10 8 
Triple A ASW 1 3/11/15 3/11/2015 139 2.794 12 6 4 
Triple A ASW 1 3/22/15 3/22/2015 60 4.318 40 23 12 
Triple A ASW 1 4/5/15 4/5/2015 159 5.842 23 18 10 
Triple A ASW 1 4/6/15 4/6/2015 105 9.398 2 1 1 
Triple A ASW 1 4/7/15 4/7/2015 212 6.096 23 14 10 
Triple A ASW 1 4/8/15 4/8/2015 117 17.272 26 13 7 
Triple A ASW 1 4/19/15 4/19/2015 1 0.254 26 14 7 
Triple A ASW 1 4/23/15 4/23/2015 193 3.556 11 8 7 
Triple A ASW 1 4/25/15 4/25/2015 1046 22.098 8 7 6 
Triple A ASW 1 4/26/15 4/26/2015 1 0.254 6 6 5 
Triple A ASW 1 5/7/15 5/8/2015 1591 26.162 9 7 6 
Triple A ASW 1 5/14/15 5/14/2015 207 1.27 11 8 8 
Triple A ASW 1 5/15/15 5/15/2015 62 0.508 11 8 7 
Triple A ASW 1 5/15/15 5/15/2015 308 5.334 15 11 8 
Triple A ASW 1 5/16/15 5/16/2015 1 0.254 15 13 12 
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Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 

5/17/15 5/17/2015 48 1.27 8 7 6 
5/18/15 5/18/2015 251 0.508 12 7 5 
5/18/15 5/18/2015 1 0.254 6 4 3 
5/19/15 5/19/2015 1 0.254 29 19 13 
5/21/15 5/21/2015 33 1.27 14 12 9 
5/22/15 5/22/2015 85 1.016 21 14 11 
5/23/15 5/24/2015 277 12.446 9 6 5 
6/5/15 6/5/2015 57 1.524 9 7 6 
7/2/15 7/2/2015 50 1.524 12 9 9 
7/3/15 7/3/2015 27 2.794 6 6 5 
7/9/15 7/9/2015 214 11.938 12 10 8 
7/10/15 7/10/2015 1 0.254 11 4 2 
7/19/15 7/19/2015 95 3.302 8 6 6 
7/20/15 7/21/2015 1243 7.366 11 9 7 
7/22/15 7/22/2015 1 0.254 15 9 9 
7/31/15 7/31/2015 12 1.016 21 12 9 
9/15/15 9/15/2015 30 0.762 3 2 2 
10/1/15 10/1/2015 228 12.192 15 11 9 
10/15/15 10/15/2015 26 1.016 5 4 3 
10/16/15 10/16/2015 76 3.048 17 7 6 
10/17/15 10/17/2015 247 9.906 6 5 5 
10/18/15 10/18/2015 25 1.016 5 3 3 
10/28/15 10/28/2015 206 7.366 3 2 2 
10/28/15 10/28/2015 199 8.636 6 5 4 
10/29/15 10/29/2015 1 0.254 11 8 7 
11/2/15 11/3/2015 1573 54.356 11 7 5 
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Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 

11/4/15 11/4/2015 1 0.254 5 
11/8/15 11/9/2015 384 11.938 12 
11/9/15 11/9/2015 411 5.334 9 
11/10/15 11/10/2015 77 2.54 8 
11/15/15 11/15/2015 363 8.128 11 
11/16/15 11/16/2015 395 10.922 9 
11/17/15 11/17/2015 196 3.048 12 
11/24/15 11/24/2015 133 7.874 15 
11/25/15 11/25/2015 313 2.032 17 
11/26/15 11/26/2015 461 6.35 27 
11/27/15 11/27/2015 82 0.762 9 
12/3/15 12/3/2015 314 5.334 6 
12/10/15 12/10/2015 484 15.748 6 
12/11/15 12/11/2015 310 5.588 15 
12/12/15 12/13/2015 1812 22.86 11 
12/14/15 12/14/2015 398 8.128 8 
12/15/15 12/15/2015 324 2.286 11 
12/16/15 12/16/2015 305 1.778 11 
12/17/15 12/17/2015 109 0.762 9 
12/19/15 12/19/2015 650 6.858 8 
12/20/15 12/22/2015 2994 78.74 12 
12/23/15 12/23/2015 438 1.016 17 
12/25/15 12/25/2015 230 4.826 18 
12/26/15 12/26/2015 285 2.54 27 
12/27/15 12/27/2015 244 1.778 20 
12/28/15 12/28/2015 8 0.508 6 

3 2 
9 9 
7 6 
6 4 
5 2 
7 6 
9 7 
10 9 
11 9 
14 12 
9 7 
5 5 
6 5 
7 5 
7 5 
6 5 
9 6 
10 9 
7 5 
7 6 
9 7 
10 9 
13 10 
14 11 
11 8 
5 5 
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Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 
Triple A ASW 1 

12/29/15 12/29/2015 106 0.508 
12/30/15 12/30/2015 1 0.254 
1/4/16 1/4/2016 1 0.254 
1/5/16 1/5/2016 941 26.416 
1/6/16 1/6/2016 1 0.254 
1/8/16 1/8/2016 397 11.43 
1/9/16 1/10/2016 1627 12.954 
1/13/16 1/13/2016 65 1.524 
1/14/16 1/15/2016 681 12.192 
1/15/16 1/15/2016 1 0.254 
1/16/16 1/16/2016 357 5.588 
1/16/16 1/16/2016 21 2.794 
1/16/16 1/16/2016 1 0.254 
1/17/16 1/18/2016 677 22.86 
1/19/16 1/19/2016 486 25.908 
1/22/16 1/23/2016 1262 47.752 
1/23/16 1/23/2016 83 0.508 
1/29/16 1/30/2016 804 25.654 
1/31/16 1/31/2016 1 0.254 
2/2/16 2/2/2016 350 6.096 
2/3/16 2/3/2016 350 9.398 
2/4/16 2/4/2016 307 5.334 
2/17/16 2/18/2016 178 8.89 
2/18/16 2/18/2016 230 14.732 
2/19/16 2/19/2016 1 0.254 
3/3/16 3/3/2016 48 5.334 

8 
12 
9 
8 
15 
3 
6 
5 
2 
8 
3 
17 
6 
14 
2 
2 
2 
2 
2 
5 
2 
2 
2 
3 
3 
5 

6 5 
7 6 
7 5 
6 5 
11 8 
2 2 
3 2 
2 2 
1 1 
5 4 
2 2 
7 4 
5 4 
11 7 
1 0 
1 0 
1 1 
1 0 
1 0 
2 1 
1 0 
1 0 
1 0 
2 1 
2 1 
3 2 
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Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 
Triple A
 

Lower FSW
 
Lower FSW
 

ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
ASW 1
 
FSW 10
 
FSW 10
 

3/4/16 
3/4/16 
3/6/16 
3/7/16 
3/8/16 
3/11/16 
3/12/16 
3/13/16 
3/21/16 
3/22/16 
3/28/16 
3/29/16 
4/8/16 
4/10/16 
4/22/16 
4/24/16 
4/27/16 
4/28/16 
5/1/16 
5/5/16 
5/6/16 
5/6/16 
5/7/16 
5/21/16 
9/14/15 
9/15/15 

3/4/2016 
3/6/2016 
3/7/2016 
3/7/2016 
3/8/2016 
3/11/2016 
3/12/2016 
3/14/2016 
3/22/2016 
3/22/2016 
3/28/2016 
3/29/2016 
4/10/2016 
4/10/2016 
4/23/2016 
4/24/2016 
4/27/2016 
4/28/2016 
5/1/2016 
5/5/2016 
5/6/2016 
5/6/2016 
5/7/2016 
5/21/2016 
9/14/2015 
9/15/2015 

1
 
2541
 
565
 
436
 
1
 

317
 
234
 
1930
 
907
 
36
 
1
 
10
 

2383
 
1
 

718
 
1
 
1
 
1
 

137
 
1
 
1
 
47
 
625
 
471
 
1
 
1
 

0.254 
112.776 
1.778 
9.144 
0.254 
20.828 
10.668 
36.83 
13.208 
1.778 
0.254 
0.508 
43.688 
0.254 
33.782 
0.254 
0.254 
0.254 
5.842 
0.254 
0.254 
1.524 
6.096 
2.794 
0.254 
0.254 

3 2 2
 
9 6 3
 
2 1 0
 
9 5 3
 
2 1 0
 
5 2 1
 
3 2 1
 
5 2 1
 
5 3 2
 
5 2 1
 
5 4 3
 
2 1 0
 
2 1 0
 
8 5 4
 
5 3 1
 
5 3 2
 
5 4 3
 
3 2 1
 
6 5 4
 
2 1 1
 
6 3 3
 
2 1 1
 
5 3 3
 
6 4 3
 
9 6 4
 
12 7 6
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Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 

FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 

10/1/15 
10/17/15 
10/28/15 
10/28/15 
11/2/15 
11/3/15 
11/8/15 
11/9/15 
11/10/15 
11/15/15 
11/16/15 
11/17/15 
11/24/15 
11/25/15 
11/26/15 
12/3/15 
12/4/15 
12/10/15 
12/11/15 
12/12/15 
12/14/15 
12/15/15 
12/16/15 
12/17/15 
12/19/15 
12/20/15 

10/1/2015 
10/17/2015 
10/28/2015 
10/28/2015 
11/3/2015 
11/3/2015 
11/9/2015 
11/9/2015 
11/10/2015 
11/15/2015 
11/16/2015 
11/17/2015 
11/24/2015 
11/25/2015 
11/26/2015 
12/3/2015 
12/4/2015 
12/10/2015 
12/11/2015 
12/13/2015 
12/14/2015 
12/15/2015 
12/16/2015 
12/17/2015 
12/19/2015 
12/20/2015 

294 
261 
409 
38 

1437 
11 
459 
462 
225 
539 
372 
59 
264 
273 
225 
100 
1 

924 
672 
1885 
349 
357 
226 
1 

858 
1 

22.098 
2.54 
9.906 
3.81 

58.674 
0.508 
20.828 
5.588 
9.906 
21.844 
8.382 
0.508 
10.414 
3.048 
2.794 
4.318 
0.254 
26.924 
18.034 
23.114 
7.62 
2.54 
1.524 
0.254 
17.018 
0.254 

9 6 4 
3 1 1 
2 1 1 
2 1 1 
3 2 2 
2 1 0 
6 4 3 
2 1 1 
2 1 1 
3 1 1 
2 1 0 
2 1 0 
2 1 0 
2 1 0 
17 8 6 
3 2 2 
3 2 1 
6 6 4 
2 1 0 
6 4 2 
12 6 3 
2 1 0 
6 5 5 
2 1 0 
11 7 6 
2 1 0 
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Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 

FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 
FSW 10 

12/20/15 
12/23/15 
12/23/15 
12/26/15 
12/27/15 
12/28/15 
12/29/15 
12/30/15 
12/31/15 
1/4/16 
1/5/16 
1/6/16 
1/8/16 
1/9/16 
1/13/16 
1/14/16 
1/16/16 
1/18/16 
1/19/16 
1/20/16 
1/22/16 
1/23/16 
1/24/16 
1/29/16 
1/29/16 
1/30/16 

12/22/2015 
12/23/2015 
12/23/2015 
12/26/2015 
12/27/2015 
12/28/2015 
12/29/2015 
12/30/2015 
12/31/2015 
1/4/2016 
1/5/2016 
1/7/2016 
1/8/2016 
1/10/2016 
1/13/2016 
1/15/2016 
1/16/2016 
1/18/2016 
1/19/2016 
1/20/2016 
1/23/2016 
1/23/2016 
1/24/2016 
1/29/2016 
1/29/2016 
1/30/2016 

2543
 
361
 
1
 
1
 

364
 
238
 
289
 
270
 
193
 
33
 
835
 
1869
 
394
 
1223
 
286
 
892
 
1034
 
527
 
632
 
1
 

1223
 
7
 
1
 
1
 
1
 

798
 

188.722 
0.762 
0.254 
0.254 
6.096 
2.032 
2.794 
2.032 
0.762 
0.508 
27.686 
33.274 
10.668 
9.144 
4.318 
23.622 
9.144 
26.162 
26.162 
0.254 
38.862 
0.508 
0.254 
0.254 
0.254 
35.56 

5 
3 
3 
14 
2 
11 
2 
2 
8 
2 
6 
5 
2 
3 
15 
2 
2 
2 
2 
12 
2 
2 
3 
5 
5 
2 

3 2 
3 3 
2 2 
9 6 
1 0 
9 5 
1 0 
1 1 
6 5 
1 0 
3 3 
3 2 
1 0 
1 1 
10 6 
1 0 
1 0 
1 0 
1 0 
8 5 
1 0 
1 0 
3 2 
3 2 
3 2 
1 0 
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Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Upper FSW 

FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 
FSW 10
 

FSW 12.13
 

1/31/16 
2/1/16 
2/2/16 
2/3/16 
2/17/16 
2/19/16 
3/3/16 
3/4/16 
3/6/16 
3/7/16 
3/13/16 
3/21/16 
3/22/16 
4/8/16 
4/10/16 
4/22/16 
4/24/16 
4/25/16 
5/1/16 
5/7/16 
5/7/16 
5/8/16 
5/8/16 
5/20/16 
5/21/16 
11/24/15 

1/31/2016 
2/1/2016 
2/2/2016 
2/3/2016 
2/18/2016 
2/19/2016 
3/3/2016 
3/6/2016 
3/7/2016 
3/7/2016 
3/14/2016 
3/22/2016 
3/22/2016 
4/10/2016 
4/10/2016 
4/24/2016 
4/24/2016 
4/25/2016 
5/1/2016 
5/7/2016 
5/7/2016 
5/8/2016 
5/8/2016 
5/20/2016 
5/21/2016 
11/24/2015 

70
 
428
 
361
 
197
 
1139
 

1
 
61
 

2593
 
448
 
1
 

1955
 
866
 
125
 
2602
 
191
 
2807
 

1
 
1
 

443
 
1
 

435
 
1
 
1
 
1
 
1
 

101
 

1.778 
12.446 
4.826 
1.778 
30.734 
0.254 
2.286 

102.616 
4.318 
0.254 
81.026 
20.32 
1.778 
41.656 
0.762 
22.86 
0.254 
0.254 
0.762 
0.254 
0.762 
0.254 
0.254 
0.254 
0.254 
6.096 

2 1 0 
11 4 2 
6 4 4 
17 7 4 
2 1 1 
9 8 7 
5 3 2 
8 5 4 
3 2 2 
2 1 1 
3 2 1 
2 1 1 
5 4 3 
2 1 0 
11 8 7 
8 8 7 
5 4 4 
5 3 3 
2 1 1 
2 1 1 
2 1 0 
8 6 4 
2 1 0 
2 1 0 
2 1 0 
2 1 0 
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Upper FSW FSW 12.13 11/26/15 11/26/2015 472 6.096 3 2 2 
Upper FSW FSW 12.13 11/27/15 11/27/2015 126 1.016 2 2 1 
Upper FSW FSW 12.13 11/27/15 11/27/2015 1 0.254 2 1 1 
Upper FSW FSW 12.13 12/3/15 12/3/2015 114 5.08 2 1 1 
Upper FSW FSW 12.13 12/10/15 12/10/2015 909 24.638 2 1 0 
Upper FSW FSW 12.13 12/12/15 12/13/2015 1029 23.368 2 1 1 
Upper FSW FSW 12.13 12/13/15 12/13/2015 93 6.096 15 8 7 
Upper FSW FSW 12.13 12/14/15 12/14/2015 395 7.112 3 3 3 
Upper FSW FSW 12.13 12/15/15 12/15/2015 404 3.302 3 2 1 
Upper FSW FSW 12.13 12/16/15 12/16/2015 246 2.286 5 2 2 
Upper FSW FSW 12.13 12/17/15 12/17/2015 1 0.254 2 1 0 
Upper FSW FSW 12.13 12/19/15 12/19/2015 672 13.716 3 1 1 
Upper FSW FSW 12.13 12/20/15 12/22/2015 2954 179.832 2 1 0 
Upper FSW FSW 12.13 12/22/15 12/23/2015 232 0.508 2 1 0 
Upper FSW FSW 12.13 12/23/15 12/23/2015 86 1.016 2 1 0 
Upper FSW FSW 12.13 12/25/15 12/25/2015 436 7.112 11 5 3 
Upper FSW FSW 12.13 12/26/15 12/26/2015 256 1.778 3 2 2 
Upper FSW FSW 12.13 12/27/15 12/27/2015 212 1.27 2 1 1 
Upper FSW FSW 12.13 12/28/15 12/28/2015 145 0.762 8 5 4 
Upper FSW FSW 12.13 1/4/16 1/4/2016 1 0.254 2 1 0 
Upper FSW FSW 12.13 1/5/16 1/5/2016 848 27.94 8 4 2 
Upper FSW FSW 12.13 1/8/16 1/8/2016 280 4.572 2 1 0 
Upper FSW FSW 12.13 1/9/16 1/10/2016 1757 27.432 3 2 2 
Upper FSW FSW 12.13 1/13/16 1/13/2016 158 3.81 2 1 0 
Upper FSW FSW 12.13 1/14/16 1/15/2016 938 21.844 2 1 0 
Upper FSW FSW 12.13 1/16/16 1/16/2016 793 9.398 2 1 0 



 

	
 

 

           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           

128 

Upper FSW FSW 12.13 1/17/16 1/18/2016 571 27.686 2 1 0 
Upper FSW FSW 12.13 1/19/16 1/19/2016 551 25.908 2 1 0 
Upper FSW FSW 12.13 1/22/16 1/23/2016 1234 40.64 2 1 0 
Upper FSW FSW 12.13 1/23/16 1/23/2016 5 0.508 2 1 0 
Upper FSW FSW 12.13 1/24/16 1/24/2016 1 0.254 2 1 0 
Upper FSW FSW 12.13 1/29/16 1/29/2016 1 0.254 2 1 0 
Upper FSW FSW 12.13 1/29/16 1/30/2016 840 33.274 2 1 0 
Upper FSW FSW 12.13 1/31/16 1/31/2016 1 0.254 3 2 2 
Upper FSW FSW 12.13 1/31/16 1/31/2016 62 1.016 2 1 1 
Upper FSW FSW 12.13 2/1/16 2/1/2016 468 9.398 2 1 0 
Upper FSW FSW 12.13 2/2/16 2/2/2016 415 4.064 5 4 4 
Upper FSW FSW 12.13 2/3/16 2/3/2016 266 2.286 11 5 4 
Upper FSW FSW 12.13 2/4/16 2/4/2016 1 0.254 8 4 3 
Upper FSW FSW 12.13 2/17/16 2/17/2016 108 5.842 2 1 1 
Upper FSW FSW 12.13 2/18/16 2/18/2016 418 17.526 2 1 1 
Upper FSW FSW 12.13 2/19/16 2/19/2016 492 3.302 2 1 0 
Upper FSW FSW 12.13 3/3/16 3/3/2016 128 2.286 2 1 0 
Upper FSW FSW 12.13 3/4/16 3/6/2016 2470 100.33 3 2 1 
Upper FSW FSW 12.13 3/6/16 3/7/2016 913 11.684 9 5 3 
Upper FSW FSW 12.13 3/11/16 3/11/2016 322 12.7 5 2 1 
Upper FSW FSW 12.13 3/11/16 3/11/2016 1 0.254 3 1 1 
Upper FSW FSW 12.13 3/12/16 3/12/2016 423 25.4 2 1 1 
Upper FSW FSW 12.13 3/12/16 3/14/2016 2073 77.47 2 1 0 
Upper FSW FSW 12.13 3/21/16 3/22/2016 836 17.78 5 3 3 
Upper FSW FSW 12.13 3/22/16 3/22/2016 48 1.778 3 3 3 
Upper FSW FSW 12.13 4/8/16 4/10/2016 2278 37.592 3 2 2 
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Upper FSW FSW 12.13 4/10/16 4/10/2016 
Upper FSW FSW 12.13 4/22/16 4/23/2016 
Upper FSW FSW 12.13 4/24/16 4/24/2016 
Upper FSW FSW 12.13 5/1/16 5/1/2016 
Upper FSW FSW 12.13 5/7/16 5/7/2016 
Upper FSW FSW 12.13 5/20/16 5/20/2016 

Triple A ASW 4.5 9/14/15 9/15/2015 
Triple A ASW 4.5 9/15/15 9/15/2015 
Triple A ASW 4.5 10/1/15 10/1/2015 
Triple A ASW 4.5 10/15/15 10/15/2015 
Triple A ASW 4.5 10/16/15 10/16/2015 
Triple A ASW 4.5 10/17/15 10/17/2015 
Triple A ASW 4.5 10/18/15 10/18/2015 
Triple A ASW 4.5 10/18/15 10/18/2015 
Triple A ASW 4.5 10/28/15 10/28/2015 
Triple A ASW 4.5 10/28/15 10/28/2015 
Triple A ASW 4.5 11/2/15 11/3/2015 
Triple A ASW 4.5 11/8/15 11/9/2015 
Triple A ASW 4.5 11/9/15 11/9/2015 
Triple A ASW 4.5 11/10/15 11/10/2015 
Triple A ASW 4.5 11/15/15 11/15/2015 
Triple A ASW 4.5 11/16/15 11/16/2015 
Triple A ASW 4.5 11/17/15 11/17/2015 
Triple A ASW 4.5 11/24/15 11/24/2015 
Triple A ASW 4.5 11/25/15 11/25/2015 
Triple A ASW 4.5 11/26/15 11/26/2015 

1 
952 
1 
93 
493 
16 
326 
1 

222 
21 
88 
249 
6 
1 

179 
510 
1858 
432 
476 
221 
371 
480 
122 
134 
312 
401 

0.254 
23.876 
0.254 
3.302 
2.54 
0.508 
0.762 
0.254 
12.954 
1.524 
3.556 
10.668 
1.016 
0.254 
7.112 
10.414 
58.674 
13.462 
5.08 
5.334 
8.636 
15.748 
1.27 
9.398 
1.016 
10.16 

3 
2 
2 
2 
3 
3 
2 
2 
2 
6 
23 
3 
6 
2 
3 
2 
2 
6 
3 
2 
8 
2 
3 
2 
6 
11 

1 1 
1 0 
1 0 
1 0 
2 1 
3 2 
1 1 
1 1 
1 0 
4 3 
11 7 
2 2 
4 2 
1 0 
3 2 
1 0 
1 0 
4 3 
2 1 
1 1 
5 5 
1 1 
2 2 
1 1 
4 3 
9 8 
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Triple A ASW 4.5 11/27/15 11/27/2015 194 2.032 
Triple A ASW 4.5 11/28/15 11/28/2015 159 0.762 
Triple A ASW 4.5 12/3/15 12/3/2015 283 6.35 
Triple A ASW 4.5 12/10/15 12/10/2015 503 19.05 
Triple A ASW 4.5 12/11/15 12/11/2015 344 11.938 
Triple A ASW 4.5 12/12/15 12/12/2015 729 10.922 
Triple A ASW 4.5 12/13/15 12/13/2015 616 12.446 
Triple A ASW 4.5 12/14/15 12/14/2015 508 13.716 
Triple A ASW 4.5 12/15/15 12/15/2015 327 2.54 
Triple A ASW 4.5 12/16/15 12/16/2015 225 1.016 
Triple A ASW 4.5 12/19/15 12/19/2015 685 10.16 
Triple A ASW 4.5 12/20/15 12/22/2015 3011 89.662 
Triple A ASW 4.5 12/23/15 12/23/2015 338 1.016 
Triple A ASW 4.5 12/24/15 12/24/2015 1 0.254 
Triple A ASW 4.5 12/25/15 12/25/2015 428 9.652 
Triple A ASW 4.5 12/26/15 12/26/2015 306 6.604 
Triple A ASW 4.5 12/27/15 12/27/2015 165 1.016 
Triple A ASW 4.5 12/28/15 12/28/2015 13 0.508 
Triple A ASW 4.5 1/4/16 1/4/2016 39 0.508 
Triple A ASW 4.5 1/5/16 1/5/2016 897 26.416 
Triple A ASW 4.5 1/6/16 1/7/2016 716 1.27 
Triple A ASW 4.5 1/7/16 1/7/2016 529 20.066 
Triple A ASW 4.5 1/8/16 1/8/2016 451 18.034 
Triple A ASW 4.5 1/9/16 1/9/2016 488 7.62 
Triple A ASW 4.5 1/10/16 1/10/2016 624 3.048 
Triple A ASW 4.5 1/13/16 1/13/2016 206 1.778 

3 1 1 
8 6 5 
12 7 5 
3 2 2 
2 2 2 
2 1 0 
5 3 2 
2 1 0 
2 1 0 
3 2 1 
3 3 2 
3 3 2 
3 2 2 
2 1 1 
2 1 0 
2 1 1 
2 1 1 
11 4 2 
12 8 6 
3 3 2 
5 3 2 
8 6 4 
11 6 3 
2 1 0 
5 2 1 
2 1 0 
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Triple A ASW 4.5 1/14/16 1/15/2016 838 14.732 2 1 0 
Triple A ASW 4.5 1/16/16 1/16/2016 389 6.35 3 3 2 
Triple A ASW 4.5 1/16/16 1/16/2016 21 2.794 9 6 5 
Triple A ASW 4.5 1/17/16 1/17/2016 1 0.254 2 2 1 
Triple A ASW 4.5 1/18/16 1/18/2016 665 23.876 2 1 1 
Triple A ASW 4.5 1/19/16 1/19/2016 513 26.67 5 4 4 
Triple A ASW 4.5 1/22/16 1/23/2016 1263 48.26 8 7 6 
Triple A ASW 4.5 1/23/16 1/23/2016 59 0.762 3 2 2 
Triple A ASW 4.5 1/29/16 1/29/2016 1 0.254 6 4 2 
Triple A ASW 4.5 1/30/16 1/30/2016 810 33.02 2 1 1 
Triple A ASW 4.5 1/31/16 1/31/2016 1 0.254 5 2 1 
Triple A ASW 4.5 1/31/16 1/31/2016 216 0.762 2 1 0 
Triple A ASW 4.5 2/1/16 2/1/2016 442 17.78 5 3 2 
Triple A ASW 4.5 2/2/16 2/2/2016 394 5.334 3 2 2 
Triple A ASW 4.5 2/3/16 2/3/2016 107 1.016 2 1 1 
Triple A ASW 4.5 2/17/16 2/17/2016 1 0.254 17 16 15 
Triple A ASW 4.5 2/17/16 2/18/2016 149 10.668 15 12 11 
Triple A ASW 4.5 2/18/16 2/18/2016 347 20.066 9 6 5 
Triple A ASW 4.5 2/19/16 2/19/2016 123 1.016 20 13 11 
Triple A ASW 4.5 3/3/16 3/3/2016 54 5.334 8 5 3 
Triple A ASW 4.5 3/4/16 3/6/2016 2631 125.476 12 5 5 
Triple A ASW 4.5 3/6/16 3/7/2016 507 1.524 12 10 8 
Triple A ASW 4.5 3/7/16 3/7/2016 534 10.414 12 6 4 
Triple A ASW 4.5 3/11/16 3/11/2016 318 21.844 40 23 12 
Triple A ASW 4.5 3/12/16 3/12/2016 260 12.7 23 18 10 
Triple A ASW 4.5 3/13/16 3/14/2016 1932 37.338 2 1 1 
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Triple A ASW 4.5 3/21/16 3/22/2016 
Triple A ASW 4.5 3/22/16 3/22/2016 
Triple A ASW 4.5 3/28/16 3/28/2016 
Triple A ASW 4.5 3/30/16 3/30/2016 
Triple A ASW 4.5 4/8/16 4/10/2016 
Triple A ASW 4.5 4/10/16 4/10/2016 
Triple A ASW 4.5 4/22/16 4/23/2016 
Triple A ASW 4.5 4/23/16 4/23/2016 
Triple A ASW 4.5 4/24/16 4/24/2016 
Triple A ASW 4.5 4/25/16 4/25/2016 
Triple A ASW 4.5 4/27/16 4/27/2016 
Triple A ASW 4.5 4/28/16 4/28/2016 
Triple A ASW 4.5 5/1/16 5/1/2016 
Triple A ASW 4.5 5/5/16 5/5/2016 
Triple A ASW 4.5 5/6/16 5/6/2016 
Triple A ASW 4.5 5/6/16 5/6/2016 
Triple A ASW 4.5 5/7/16 5/7/2016 
Triple A ASW 4.5 5/8/16 5/8/2016 
Triple A ASW 4.5 5/20/16 5/20/2016 
Triple A ASW 4.5 5/21/16 5/21/2016 
Triple A ASW 4.5 5/22/16 5/22/2016 

Lower FSW FSW 11 7/31/15 7/31/2015 
Lower FSW FSW 11 9/14/15 9/14/2015 
Lower FSW FSW 11 9/15/15 9/15/2015 
Lower FSW FSW 11 10/1/15 10/1/2015 
Lower FSW FSW 11 10/17/15 10/17/2015 

879 
101 
64 
15 

2439 
1 

716 
1 
1 
1 
89 
1 

182 
1 
1 

111 
607 
1 
1 

185 
1 
7 
1 
1 

289 
237 

13.97 
4.064 
0.762 
0.508 
49.276 
0.254 
39.37 
0.254 
0.254 
0.254 
0.762 
0.254 
5.334 
0.254 
0.254 
2.032 
6.604 
0.254 
0.254 
3.048 
0.254 
0.762 
0.254 
0.254 
22.352 
2.032 

23 
26 
26 
11 
8 
6 
9 
11 
11 
15 
15 
8 
12 
6 
29 
14 
21 
9 
9 
12 
6 
12 
11 
8 
11 
15 

14 10 
13 7 
14 7 
8 7 
7 6 
6 5 
7 6 
8 8 
8 7 
11 8 
13 12 
7 6 
7 5 
4 3 
19 13 
12 9 
14 11 
6 5 
7 6 
9 9 
6 5 
10 8 
4 2 
6 6 
9 7 
9 9 
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Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 

FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 

10/18/15 
10/28/15 
10/28/15 
11/2/15 
11/3/15 
11/8/15 
11/9/15 
11/10/15 
11/15/15 
11/16/15 
11/17/15 
11/24/15 
11/25/15 
11/26/15 
12/3/15 
12/10/15 
12/11/15 
12/12/15 
12/13/15 
12/14/15 
12/14/15 
12/15/15 
12/16/15 
12/19/15 
12/20/15 
12/20/15 

10/18/2015 
10/28/2015 
10/28/2015 
11/3/2015 
11/3/2015 
11/9/2015 
11/9/2015 
11/10/2015 
11/15/2015 
11/16/2015 
11/17/2015 
11/24/2015 
11/25/2015 
11/26/2015 
12/3/2015 
12/10/2015 
12/11/2015 
12/13/2015 
12/13/2015 
12/14/2015 
12/14/2015 
12/15/2015 
12/16/2015 
12/19/2015 
12/20/2015 
12/22/2015 

1 
401 
224 
1459 
11 
348 
466 
222 
536 
377 
98 
264 
295 
210 
110 
931 
363 
977 
542 
1 

384 
160 
175 
856 
59 

2537 

0.254 
10.414 
2.032 
62.23 
0.508 
21.59 
6.604 
9.906 
23.114 
8.382 
0.762 
10.16 
1.778 
3.048 
4.064 
26.924 
23.368 
12.446 
10.922 
0.254 
8.89 
1.524 
1.27 

18.542 
0.508 

198.628 

21 
3 
15 
5 
17 
6 
5 
3 
6 
11 
11 
5 
12 
9 
8 
11 
9 
12 
15 
17 
27 
9 
6 
6 
15 
11 

12 9 
2 2 
11 9 
4 3 
7 6 
5 5 
3 3 
2 2 
5 4 
8 7 
7 5 
3 2 
9 9 
7 6 
6 4 
5 2 
7 6 
9 7 
10 9 
11 9 
14 12 
9 7 
5 5 
6 5 
7 5 
7 5 
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Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 

FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 
FSW 11
 

12/22/15 
12/23/15 
12/25/15 
12/26/15 
12/27/15 
12/28/15 
12/29/15 
1/4/16 
1/5/16 
1/6/16 
1/8/16 
1/9/16 
1/13/16 
1/14/16 
1/16/16 
1/16/16 
1/17/16 
1/19/16 
1/20/16 
1/22/16 
1/23/16 
1/24/16 
1/29/16 
1/29/16 
1/29/16 
1/31/16 

12/23/2015 
12/23/2015 
12/25/2015 
12/26/2015 
12/27/2015 
12/28/2015 
12/29/2015 
1/4/2016 
1/5/2016 
1/7/2016 
1/8/2016 
1/10/2016 
1/13/2016 
1/15/2016 
1/16/2016 
1/16/2016 
1/18/2016 
1/19/2016 
1/20/2016 
1/23/2016 
1/23/2016 
1/24/2016 
1/29/2016 
1/29/2016 
1/30/2016 
1/31/2016 

551
 
1
 
1
 

253
 
307
 
284
 
116
 
36
 

1140
 
1911
 
448
 
1192
 
284
 
906
 
407
 
30
 
550
 
509
 
1
 

1220
 
63
 
33
 
1
 
1
 

740
 
937
 

0.762 
0.254 
0.254 
6.35 
6.096 
1.524 
0.762 
0.508 
29.718 
29.21 
11.684 
10.922 
4.318 
23.622 
7.112 
2.286 
26.162 
27.432 
0.254 
40.386 
0.508 
0.508 
0.254 
0.254 
35.306 
10.414 

8
 
11
 
11
 
9
 
8
 
12
 
17
 
18
 
27
 
20
 
6
 
8
 
12
 
9
 
8
 
15
 
3
 
6
 
5
 
2
 
8
 
3
 
17
 
6
 
14
 
2
 

6 5
 
9 6
 
10 9
 
7 5
 
7 6
 
9 7
 
10 9
 
13 10
 
14 11
 
11 8
 
5 5
 
6 5
 
7 6
 
7 5
 
6 5
 
11 8
 
2 2
 
3 2
 
2 2
 
1 1
 
5 4
 
2 2
 
7 4
 
5 4
 
11 7
 
1 0
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Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Lower FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 

FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 11 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 

2/1/16 
2/2/16 
2/17/16 
2/19/16 
3/3/16 
3/4/16 
3/6/16 
3/7/16 
3/11/16 
3/13/16 
3/21/16 
3/28/16 
4/8/16 
4/10/16 
4/22/16 
4/24/16 
4/25/16 
5/1/16 
5/7/16 
5/20/16 
5/21/16 
11/24/15 
11/25/15 
11/26/15 
11/27/15 
12/3/15 

2/1/2016 
2/2/2016 
2/18/2016 
2/19/2016 
3/3/2016 
3/6/2016 
3/7/2016 
3/7/2016 
3/12/2016 
3/14/2016 
3/22/2016 
3/28/2016 
4/10/2016 
4/10/2016 
4/23/2016 
4/24/2016 
4/25/2016 
5/1/2016 
5/7/2016 
5/20/2016 
5/21/2016 
11/24/2015 
11/25/2015 
11/26/2015 
11/27/2015 
12/3/2015 

428
 
295
 
1184
 
92
 
60
 

2594
 
1006
 

1
 
1569
 
1955
 
1371
 

1
 
2283
 
173
 
935
 
35
 
1
 
76
 
612
 
63
 
1
 

108
 
252
 
338
 
270
 
123
 

10.16 
2.286 
33.528 
1.016 
2.286 

108.966 
15.494 
0.254 
41.148 
81.026 
22.352 
0.254 
46.228 
1.016 
30.226 
1.016 
0.254 
1.016 
2.54 
0.762 
0.254 
6.858 
0.762 
6.35 
1.016 
4.826 

2 
2 
2 
2 
5 
2 
2 
2 
3 
3 
5 
3 
9 
2 
9 
2 
5 
3 
5 
5 
5 
5 
2 
2 
8 
5 

1 0 
1 1 
1 0 
1 0 
2 1 
1 0 
1 0 
1 0 
2 1 
2 1 
3 2 
2 2 
6 3 
1 0 
5 3 
1 0 
2 1 
2 1 
2 1 
3 2 
2 1 
4 3 
1 0 
1 0 
5 4 
3 1 
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Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 

FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 

12/10/15 
12/11/15 
12/12/15 
12/14/15 
12/15/15 
12/16/15 
12/17/15 
12/19/15 
12/20/15 
12/22/15 
12/23/15 
12/23/15 
12/25/15 
12/26/15 
12/27/15 
12/28/15 
12/28/15 
12/29/15 
1/4/16 
1/5/16 
1/7/16 
1/8/16 
1/9/16 
1/13/16 
1/14/16 
1/16/16 

12/10/2015 
12/12/2015 
12/13/2015 
12/14/2015 
12/15/2015 
12/16/2015 
12/17/2015 
12/19/2015 
12/22/2015 
12/22/2015 
12/23/2015 
12/23/2015 
12/25/2015 
12/26/2015 
12/27/2015 
12/28/2015 
12/28/2015 
12/29/2015 
1/4/2016 
1/5/2016 
1/7/2016 
1/8/2016 
1/10/2016 
1/13/2016 
1/15/2016 
1/16/2016 

923 
57 

1923 
366 
359 
257 
1 

617 
3018 

1 
1 
33 
202 
391 
321 
169 
1 

172 
28 
845 
2 

464 
1584 
215 
956 
795 

27.686 
0.762 
29.21 
12.446 
5.334 
3.556 
0.254 
12.7 

191.262 
0.254 
0.254 
1.27 
4.064 
6.604 
3.302 
1.016 
0.254 
1.016 
0.508 
29.21 
1.778 
26.416 
16.002 
4.318 
22.86 
9.906 

5 3 2 
5 4 3 
3 2 1 
6 5 4 
2 1 1 
6 3 3 
2 1 1 
5 3 3 
6 4 3 
9 6 4 
12 7 6 
9 6 4 
3 1 1 
2 1 1 
2 1 1 
3 2 2 
2 1 0 
6 4 3 
2 1 1 
2 1 1 
3 1 1 
2 1 0 
2 1 0 
2 1 0 
2 1 0 
17 8 6 
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Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 
Upper FSW 

FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 
FSW 14 

1/17/16 
1/19/16 
1/19/16 
1/22/16 
1/23/16 
1/29/16 
1/29/16 
1/31/16 
1/31/16 
2/1/16 
2/2/16 
2/3/16 
2/17/16 
2/18/16 
2/19/16 
3/3/16 
3/4/16 
3/6/16 
3/7/16 
3/11/16 
3/12/16 
3/12/16 
3/21/16 
3/22/16 
4/8/16 
4/10/16 

1/18/2016 
1/19/2016 
1/19/2016 
1/23/2016 
1/23/2016 
1/29/2016 
1/30/2016 
1/31/2016 
1/31/2016 
2/1/2016 
2/2/2016 
2/3/2016 
2/17/2016 
2/18/2016 
2/19/2016 
3/3/2016 
3/6/2016 
3/7/2016 
3/7/2016 
3/11/2016 
3/12/2016 
3/14/2016 
3/22/2016 
3/22/2016 
4/10/2016 
4/10/2016 

553 
526 
1 

1252 
99 
176 
810 
1 

268 
534 
411 
179 
103 
449 
291 
109 
2484 
412 
132 
250 
817 
2042 
847 
31 

2296 
1 

25.654 
27.686 
0.254 
42.418 
1.016 
0.508 
38.1 
0.254 
3.048 
8.89 
3.81 
1.524 
5.842 
20.828 
5.08 
2.286 

103.632 
1.778 
10.16 
10.414 
26.924 
78.232 
19.812 
1.27 

37.084 
0.254 

3 
3 
6 
2 
6 
12 
2 
6 
2 
11 
2 
5 
3 
3 
14 
2 
11 
2 
2 
8 
2 
6 
5 
2 
3 
15 

2 2 
2 1 
6 4 
1 0 
4 2 
6 3 
1 0 
5 5 
1 0 
7 6 
1 0 
3 2 
3 3 
2 2 
9 6 
1 0 
9 5 
1 0 
1 1 
6 5 
1 0 
3 3 
3 2 
1 0 
1 1 
10 6 



 

	
 

 

           
           
           
           

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Upper FSW FSW 14 4/22/16 4/23/2016 1166 28.448 2 1 0 
Upper FSW FSW 14 5/1/16 5/1/2016 94 2.54 2 1 0 
Upper FSW FSW 14 5/7/16 5/7/2016 835 2.794 2 1 0 
Upper FSW FSW 14 5/20/16 5/20/2016 45 0.508 2 1 0 
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Appendix K: Individual rill data in the Rim Fire swales. Femmons is abbreviated with “FSW”. “U” indicates untrafficked class, 
“Mix” mixed traffic class, “Sub” subsoiled class, “FB” feller buncher tracks class, “LTS” low traffic skid trail class, and “HTS” 
high traffic skid trail class. 

Swale Unit Treatment Flowpath type Connected to
outlet 

Length to 
outlet (m) 

Initiation 
Class Year Segment

length (m) 
ASW1 Triple A Logged Channel Yes 63.2 U 2015 63.2 
ASW1 Triple A Logged Rill Yes 15.3 U 2015 15.3 
ASW1 Triple A Logged Rill Yes 18.9 U 2015 16.3 
ASW1 Triple A Logged Rill Yes 21.7 LTS 2015 14.0 
ASW1 Triple A Logged Rill Yes 20.1 LTS 2015 11.5 
ASW1 Triple A Logged Rill Yes 13.5 U 2015 13.5 
ASW1 Triple A Logged Rill Yes 39.9 LTS 2015 27.3 
ASW1 Triple A Logged Rill Yes 39.8 LTS 2015 25.5 
ASW1 Triple A Logged Rill Yes 37.1 LTS 2015 21.6 
ASW1 Triple A Logged Rill Yes 48 LTS 2015 30.2 
ASW1 Triple A Logged Rill Yes 42.2 U 2015 16.0 
ASW1 Triple A Logged Rill Yes 51.5 U 2015 18.3 
ASW1 Triple A Logged Rill Yes 67.8 U 2015 30.9 
ASW1 Triple A Logged Rill Yes 78.7 U 2015 19.5 
ASW1 Triple A Logged Rill Yes 65 U 2015 20.3 
ASW1 Triple A Logged Rill Yes 53.9 U 2015 9.3 
ASW1 Triple A Logged Rill Yes 56.2 U 2015 10.1 
ASW1 Triple A Logged Rill Yes 59.7 U 2015 14.9 
ASW1 Triple A Logged Rill Yes 55.3 U 2015 5.8 
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ASW1 Triple A 
ASW1 Triple A 
ASW1 Triple A 
ASW2 Triple A 
ASW2 Triple A 
ASW2 Triple A 
ASW2 Triple A 
ASW2 Triple A 
ASW2 Triple A 
ASW2 Triple A 
ASW2 Triple A 
ASW2 Triple A 
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ASW2 Triple A 
ASW2 Triple A 
ASW2 Triple A 
ASW2 Triple A 
ASW2 Triple A 
ASW2 Triple A 
ASW2 Triple A 
ASW2 Triple A 
ASW2 Triple A 
ASW2 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 

Logged Rill Yes 110.1 HTS 2015 83.2 
Logged Rill Yes 61.9 HTS 2015 28.8 
Logged Rill Yes 66 LTS 2015 10.9 
Control Channel Yes 29.6 U 2015 29.6 
Control Rill Yes 28.5 U 2015 2.1 
Control Rill Yes 27.5 U 2015 3.5 
Control Rill Yes 24.4 U 2015 2.3 
Control Rill Yes 32.2 U 2015 9.5 
Control Rill Yes 29.5 U 2015 2.0 
Control Rill Yes 25.9 U 2015 6.0 
Control Rill Yes 20.9 U 2015 2.4 
Control Rill Yes 20.7 U 2015 2.2 
Control Rill Yes 20.7 U 2015 4.0 
Control Rill Yes 19.3 U 2015 3.8 
Control Rill Yes 10.5 U 2015 3.9 
Control Rill Yes 11 U 2015 2.4 
Control Rill Yes 21 U 2015 12.4 
Control Rill Yes 9.3 U 2015 2.1 
Control Rill Yes 17.9 U 2015 11.8 
Control Rill Yes 19.9 U 2015 15.1 
Control Rill Yes 8.7 U 2015 5.5 
Control Rill Yes 8.5 U 2015 6.6 
Logged Rill Yes 62 HTS 2015 31.6 
Logged Rill Yes 56.8 HTS 2015 4.6 
Logged Rill Yes 54 HTS 2015 7.6 
Logged Rill Yes 48 HTS 2015 11.6 



 

	
 

 

          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          

ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
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ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 

Logged Rill Yes 56.7 HTS 2015 32.7 
Logged Rill Yes 45.2 HTS 2015 42.8 
Logged Rill Yes 44.9 HTS 2015 12.7 
Logged Rill Yes 43.6 U 2015 6.8 
Logged Rill Yes 40.3 U 2015 5.1 
Logged Rill Yes 26.2 FB 2015 21.1 
Logged Rill Yes 35.9 HTS 2015 17.8 
Logged Rill Yes 23.4 U 2015 17.2 
Logged Rill Yes 12.1 FB 2015 12.1 
Logged Rill Yes 52.7 HTS 2015 34.6 
Logged Rill Yes 41.6 HTS 2015 6.0 
Logged Channel Yes 30.3 U 2015 30.3 
Logged Rill Yes 53.9 Sub 2016 18.8 
Logged Rill Yes 63.7 Sub 2016 40.2 
Logged Rill Yes 42.4 Sub 2016 5.4 
Logged Rill Yes 65.9 Sub 2016 9.0 
Logged Rill Yes 63.2 Sub 2016 7.2 
Logged Rill Yes 61.9 Sub 2016 6.9 
Logged Rill Yes 49.5 Sub 2016 11.5 
Logged Rill Yes 46.1 Sub 2016 6.5 
Logged Rill Yes 45.7 Sub 2016 43.2 
Logged Rill Yes 44.4 Sub 2016 5.4 
Logged Rill Yes 47 Sub 2016 16.6 
Logged Rill Yes 35.4 Sub 2016 34.0 
Logged Rill Yes 50.9 Sub 2016 13.0 
Logged Rill Yes 49 Sub 2016 6.4 



 

	
 

 

          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          

ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
ASW3 Triple A 
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ASW4 Triple A 
ASW4 Triple A 
ASW4 Triple A 
ASW4 Triple A 
ASW4 Triple A 
ASW4 Triple A 
ASW4 Triple A 
ASW4 Triple A 
ASW4 Triple A 
ASW4 Triple A 
ASW4 Triple A 
ASW4 Triple A 
ASW4 Triple A 
ASW5 Triple A 

Logged Rill Yes 47 Sub 2016 10.0 
Logged Rill Yes 49.3 Sub 2016 14.0 
Logged Rill Yes 56.4 HTS 2016 15.7 
Logged Rill Yes 48.6 HTS 2016 4.3 
Logged Rill Yes 45.1 U 2016 4.8 
Logged Rill Yes 41 U 2016 2.5 
Logged Rill Yes 26 FB 2016 21.0 
Logged Rill Yes 35.6 HTS 2016 17.7 
Logged Channel Yes 30.1 U 2016 30.1 
Logged Rill Yes 23.3 U 2016 17.1 
Logged Rill Yes 12.1 FB 2016 12.1 
Logged Rill Yes 37.9 U 2016 7.8 
Logged Rill Yes 9 U 2015 9.0 
Logged Channel Yes 16.2 U 2015 16.2 
Logged Rill Yes 6.1 U 2015 6.1 
Logged Rill Yes 24 Mix 2015 7.7 
Logged Rill No 0 LTS 2015 14.5 
Logged Rill No 0 Mix 2015 7.1 
Logged Rill No 0 FB 2015 5.1 
Logged Rill No 0 FB 2015 9.7 
Logged Rill No 0 LTS 2015 7.1 
Logged Rill No 0 HTS 2015 60.6 
Logged Rill No 0 U 2015 22.0 
Logged Rill No 0 FB 2015 10.5 
Logged Rill Yes 31.8 FB 2015 15.6 
Logged Rill Yes 35.3 HTS 2015 32.3 



 

	
 

 

          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          

ASW5 Triple A 
ASW5 Triple A 
ASW5 Triple A 
ASW5 Triple A 
ASW5 Triple A 
ASW5 Triple A 
ASW5 Triple A 
ASW5 Triple A 
ASW5 Triple A 
ASW5 Triple A 
ASW5 Triple A 
ASW5 Triple A 
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ASW5 Triple A 
ASW5 Triple A 
ASW5 Triple A 
ASW6 Triple A 
ASW6 Triple A 
ASW6 Triple A 
ASW6 Triple A 
ASW6 Triple A 
ASW6 Triple A 
ASW6 Triple A 
ASW6 Triple A 
ASW6 Triple A 
ASW6 Triple A 
ASW6 Triple A 

Logged Rill Yes 15.1 U 2015 13.7 
Logged Rill Yes 32.5 HTS 2015 27.7 
Logged Rill Yes 51.3 HTS 2015 38.6 
Logged Rill Yes 17.5 U 2015 7.2 
Logged Rill Yes 24.9 U 2015 12.2 
Logged Rill Yes 26.2 HTS 2015 13.1 
Logged Rill Yes 36.5 HTS 2015 12.9 
Logged Rill Yes 38.8 HTS 2015 33.0 
Logged Rill Yes 48 HTS 2015 11.7 
Logged Rill Yes 47.3 HTS 2015 34.7 
Logged Rill Yes 33.7 HTS 2015 25.5 
Logged Rill Yes 30.4 HTS 2015 15.3 
Logged Rill Yes 40.3 HTS 2015 23.4 
Logged Rill Yes 35.3 HTS 2015 9.8 
Logged Channel Yes 12.7 U 2015 12.7 
Logged Rill Yes 68.4 HTS 2015 54.2 
Logged Rill Yes 35.7 HTS 2015 35.7 
Logged Rill Yes 36.7 HTS 2015 3.2 
Logged Rill Yes 58.2 HTS 2015 44.0 
Logged Rill Yes 40.3 LTS 2015 19.9 
Logged Rill Yes 54.2 HTS 2015 12.3 
Logged Rill Yes 54.2 HTS 2015 6.4 
Logged Rill Yes 62.2 HTS 2015 6.5 
Logged Rill Yes 13 U 2015 6.2 
Logged Rill Yes 6.8 FB 2015 6.8 
Logged Rill Yes 14.2 U 2015 14.2 



 

	
 

 

          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          

ASW7 Triple A 
ASW7 Triple A 
ASW7 Triple A 
ASW7 Triple A 
ASW7 Triple A 
ASW7 Triple A 
ASW7 Triple A 
ASW7 Triple A 
ASW7 Triple A 
FSW10 Lower FSW 
FSW10 Lower FSW 
FSW10 Lower FSW 
FSW10 Lower FSW 
FSW10 Lower FSW 
FSW10 Lower FSW 
FSW10 Lower FSW 
FSW10 Lower FSW 
FSW10 Lower FSW 
FSW10 Lower FSW 
FSW10 Lower FSW 
FSW11 Lower FSW 
FSW11 Lower FSW 
FSW11 Lower FSW 
FSW11 Lower FSW 
FSW11 Lower FSW 
FSW11 Lower FSW 
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Control Rill Yes 27 U 2015 27.0 
Control Rill Yes 20.1 U 2015 7.4 
Control Rill Yes 24.3 U 2015 24.3 
Control Rill Yes 19 U 2015 19.0 
Control Rill Yes 19.2 U 2015 4.5 
Control Rill Yes 29.5 U 2015 23.3 
Control Rill Yes 25.7 U 2015 25.7 
Control Rill Yes 12.2 U 2015 12.2 
Control Rill No 0 U 2015 15.4 
Logged Rill Yes 27.3 Mix 2016 27.3 
Logged Rill Yes 32.5 HTS 2016 27.2 
Logged Rill Yes 8 U 2016 8.0 
Logged Rill Yes 49.4 HTS 2016 49.4 
Logged Rill Yes 50 HTS 2016 20.3 
Logged Rill Yes 48.4 HTS 2016 32.7 
Logged Rill Yes 27.8 Mix 2016 11.0 
Logged Rill Yes 16.9 HTS 2016 16.9 
Logged Rill No 0 Mix 2016 27.5 
Logged Rill No 0 Mix 2016 8.4 
Logged Rill Yes 9.7 U 2016 9.7 
Logged Rill Yes 18.2 FB 2016 18.2 
Logged Rill No 0 FB 2016 10.9 
Logged Rill No 0 HTS 2016 7.2 
Logged Rill No 0 HTS 2016 20.8 
Logged Rill No 0 HTS 2016 13.0 
Logged Rill No 0 HTS 2016 41.3 



 

	
 

 

          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          

FSW11 Lower FSW 
FSW11 Lower FSW 
FSW11 Lower FSW 
FSW11 Lower FSW 
FSW11 Lower FSW 
FSW11 Lower FSW 
FSW11 Lower FSW 
FSW11 Lower FSW 
FSW11 Lower FSW 
FSW11 Lower FSW 
FSW11 Lower FSW 
FSW12 Upper FSW 
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FSW12 Upper FSW 
FSW12 Upper FSW 
FSW12 Upper FSW 
FSW12 Upper FSW 
FSW12 Upper FSW 
FSW12 Upper FSW 
FSW12 Upper FSW 
FSW12 Upper FSW 
FSW12 Upper FSW 
FSW12 Upper FSW 
FSW12 Upper FSW 
FSW12 Upper FSW 
FSW12 Upper FSW 
FSW12 Upper FSW 

Logged Rill No 0 HTS 2016 12.3 
Logged Rill No 0 HTS 2016 17.4 
Logged Rill No 0 HTS 2016 12.4 
Logged Rill No 0 HTS 2016 9.2 
Logged Rill No 0 HTS 2016 13.7 
Logged Rill No 0 HTS 2016 11.2 
Logged Rill No 0 HTS 2016 6.0 
Logged Rill No 0 FB 2016 7.8 
Logged Rill No 0 FB 2016 11.3 
Logged Rill No 0 FB 2016 15.3 
Logged Rill No 0 FB 2016 11.5 
Control Channel Yes 31.5 U 2016 31.5 
Control Rill Yes 11.7 U 2016 8.0 
Control Rill Yes 66.2 U 2016 53.0 
Control Rill Yes 32.8 U 2016 18.5 
Control Rill Yes 35.8 U 2016 20.0 
Control Rill Yes 23 U 2016 8.7 
Control Rill Yes 25.8 U 2016 3.2 
Control Rill Yes 43.3 U 2016 20.7 
Control Rill Yes 38.3 U 2016 7.3 
Control Rill Yes 58.5 U 2016 27.0 
Control Rill No 0 U 2016 14.9 
Control Rill Yes 58.7 U 2016 12.1 
Control Rill Yes 50 U 2016 24.9 
Control Rill Yes 30.1 U 2016 5.4 
Control Rill Yes 17.4 U 2016 4.2 



 

	
 

 

          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          

FSW12 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
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FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 
FSW13 Upper FSW 

Control Rill Yes 18.8 U 2016 9.2 
Logged Channel Yes 73.5 U 2016 73.5 
Logged Rill Yes 4.4 U 2016 4.4 
Logged Rill Yes 13.5 U 2016 10.7 
Logged Rill Yes 44.6 HTS 2016 41.0 
Logged Rill Yes 46.5 HTS 2016 12.9 
Logged Rill Yes 23.8 U 2016 6.8 
Logged Rill Yes 20.5 U 2016 14.4 
Logged Rill Yes 55.5 U 2016 35.5 
Logged Rill Yes 41.1 U 2016 4.6 
Logged Rill Yes 39.4 U 2016 12.8 
Logged Rill Yes 60.8 U 2016 35.3 
Logged Rill Yes 48.9 U 2016 18.8 
Logged Rill Yes 47 U 2016 10.8 
Logged Rill Yes 104.4 HTS 2016 51.0 
Logged Rill Yes 104.3 HTS 2016 5.8 
Logged Rill Yes 105.3 HTS 2016 6.8 
Logged Rill Yes 92 U 2016 21.6 
Logged Rill Yes 87.9 U 2016 15.3 
Logged Rill Yes 88.3 U 2016 13.1 
Logged Rill Yes 92 U 2016 18.5 
Logged Rill Yes 72.7 U 2016 9.0 
Logged Rill No 0 HTS 2016 50.5 
Logged Rill No 0 HTS 2016 10.3 
Logged Rill No 0 HTS 2016 15.6 
Logged Rill No 0 HTS 2016 18.3 



 

	
 

 

          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          

FSW14 Upper FSW 
FSW14 Upper FSW 
FSW14 Upper FSW 
FSW14 Upper FSW 
FSW14 Upper FSW 
FSW14 Upper FSW 
FSW14 Upper FSW 
FSW14 Upper FSW 
FSW14 Upper FSW 
FSW8 Lower FSW 
FSW8 Lower FSW 
FSW8 Lower FSW 
FSW8 Lower FSW 
FSW8 Lower FSW 
FSW8 Lower FSW 
FSW8 Lower FSW 
FSW8 Lower FSW 
FSW8 Lower FSW 
FSW8 Lower FSW 
FSW8 Lower FSW 
FSW9 Lower FSW 
FSW9 Lower FSW 
FSW9 Lower FSW 
FSW9 Lower FSW 
FSW9 Lower FSW 
FSW9 Lower FSW 
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Control Channel Yes 49 U 2016 49.0 
Control Rill Yes 31.6 U 2016 8.3 
Control Rill Yes 29.5 U 2016 8.4 
Control Rill Yes 25 U 2016 6.0 
Control Rill Yes 30.7 U 2016 19.4 
Control Rill Yes 41.9 U 2016 25.0 
Control Rill Yes 41.6 U 2016 32.7 
Control Rill Yes 16.4 U 2016 9.3 
Control Rill Yes 21 U 2016 20.3 
Control Rill Yes 29.9 U 2016 29.9 
Control Rill Yes 16.2 U 2016 16.2 
Control Rill Yes 19.6 U 2016 19.6 
Control Rill Yes 24.9 U 2016 24.9 
Control Rill No 0 U 2016 4.2 
Control Rill No 0 U 2016 9.8 
Control Rill No 0 U 2016 14.3 
Control Rill No 0 U 2016 6.2 
Control Rill No 0 U 2016 10.3 
Control Rill No 0 U 2016 14.3 
Control Rill No 0 U 2016 16.1 
Logged Rill Yes 18.1 FB 2016 18.1 
Logged Rill Yes 8.9 U 2016 8.9 
Logged Rill Yes 22.7 U 2016 22.7 
Logged Rill Yes 21.4 U 2016 8.6 
Logged Rill Yes 19.7 U 2016 10.0 
Logged Rill Yes 46.8 HTS 2016 46.8 



 

	
 

 

          
          
          
          
          
          
          
          
          
          

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FSW9 Lower FSW Logged Rill Yes 39.2 HTS 2016 9.2 
FSW9 Lower FSW Logged Rill Yes 43.1 HTS 2016 11.2 
FSW9 Lower FSW Logged Rill Yes 18.9 U 2016 10.6 
FSW9 Lower FSW Logged Rill Yes 17.2 U 2016 10.3 
FSW9 Lower FSW Logged Rill Yes 13.8 U 2016 13.8 
FSW9 Lower FSW Logged Rill Yes 20.8 HTS 2016 20.8 
FSW9 Lower FSW Logged Rill Yes 26 HTS 2016 18.4 
FSW9 Lower FSW Logged Rill Yes 12.9 HTS 2016 4.2 
FSW9 Lower FSW Logged Rill No 0 HTS 2016 9.7 
FSW9 Lower FSW Logged Rill No 0 FB 2016 12.3 
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Appendix L: Annual sediment yield for the Rim Fire swales. Femmons is abbreviated by “FSW”. NA indicates logging had not 
occurred and fences were not installed for the water year. Lower Femmons monitoring only began after July 2015. 

WY 2015 Yield (Mg Unit Swale Treatment WY 2016 Yield (Mg ha-1)ha-1) 
Triple A 
Triple A 
Triple A 
Triple A 
Triple A 
Triple A 
Triple A 

Lower FSW 
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Lower FSW 
Lower FSW 
Lower FSW 
Upper FSW 
Upper FSW 
Upper FSW 

ASW 1 Logged 2.84 1.10 
ASW 2 Control 1.76 0.04 
ASW 3 Logged 2.71 3.16 
ASW 4 Logged 0.26 0.14 
ASW 5 Logged 8.14 1.24 
ASW 6 Logged 1.05 0.03 
ASW 7 Control 6.81 1.80 
FSW 8 Control 0.00 0.11 
FSW 9 Logged 0.00 2.66 
FSW 10 Logged 0.00 0.50 
FSW 11 Logged 0.00 0.01 
FSW 12 Control NA 12.0 
FSW 13 Logged NA 3.24 
FSW 14 Control NA 11.6 


	Michigan Technological University
	Digital Commons @ Michigan Tech
	2016

	EFFECTS OF WILDFIRE AND POST-FIRE SALVAGE LOGGING ON RILL NETWORKS AND SEDIMENT DELIVERY IN CALIFORNIA FORESTS
	Will Olsen
	Recommended Citation


	Microsoft Word - Will_Olsen_Thesis_Effects of wildfire and post-fire salvage logging on rill networks and sediment delivery in California forests.docx

