Addendum to Cross-Laminated Timber Layup Tests Using Western Wood Products Association (WWPA) White fir Species Group Report

Summary

The goal of this project was to help validate the viability of white-fir use in cross laminated timber panels. White-fir falls within the Hem-fir species category within the National Design Specifications (NDS), which allows it to be used as a V5 or E5 grade panel. The grades are identified as V for use of visually graded lumber and E for use of machine stress rated (MSR) lumber within a panel, while the number 5 is the species category for Hem-fir. The two main wood species/groups used in America for CLT are Douglas-fir and spruce-pine-fir (SPF). As white fir is a common species in California, this study is intended to inform industry looking to California for siting a CLT facility on the usability of white-fir as an alternative to other species.

This addendum highlights the comparisons of white-fir CLT to that of the design values used within the CLT standard (PRG-320). Within the addendum, the process of creating the test values to compare to the design values are written out, along with side-by-side comparisons of the values. The data from the study shows that white-fir can meet the PRG-320 standard and is a viable option to be used for CLT. Next steps will include a manufacturer going through the certification process to make white fir panels before white-fir can be used within a structure.

Design Values
To better illustrate a comparison to the PRG 320's tabular values, the test values were converted per PRG 3208.5 using the long and short-span testing data to compare against the design values. The testing values converted were the flatwise bending moment $\left(\mathrm{F}_{\mathrm{b}} S\right)_{\text {eff. }, \mathrm{f}, \mathrm{o}}$, flatwise stiffness (El) eff,f,0, and flatwise shear capacity in the minor strength direction $\mathrm{V}_{\mathrm{s}, 90}$. The first step of converting the testing values, was to calculate the three mechanical properties using the equations derived from ASTM D198 and ANSI PRG 320 Appendix X3. The equations used to calculate the properties are summarized below:

$$
\text { Effective Flatwise Bending Moment: } \quad\left(F_{b} \mathrm{~S}\right)_{e f f, f, 0}=\frac{P}{2} \times \frac{L}{3}
$$

Where P is max load in lbf. and L is the total testing span in ft .

$$
\text { Effective Flatwise Stiffness: } \quad(E I)_{e f f, f, 0}=E_{i} \times \frac{b \times h^{3}}{12}
$$

Where E_{i} is the modulus of elasticity, b is the sample width, and h is the sample thickness.

$$
\text { Flatwise Shear Capacity: } \quad V_{s, 90}=F_{s, \text { major }} \frac{2 A_{\text {gross }, 0}}{3}
$$

Where $F_{s, \text { minor }}$ is the shear stress in the minor direction and A gross, o is the gross cross-sectional area of the sample.

Once these properties were calculated, the $5^{\text {th }}$ percentile tolerance limit was found, excluding the effective bending stiffness, where only the average was used. To finalize the converted values the $5^{\text {th }}$ percentiles for the effective bending moment and shear capacity were divided by a safety factor (2.1), following the standard method described in PRG 320 section 8 (ANSI/APA 2019). The equation used for calculating the $5^{\text {th }}$ percentile is stated below:

$$
\mathrm{X}_{5 \text { th percentile }}=\mu-1.64 \sigma
$$

Where μ is the mean and σ is the standard deviation of the properties, while 1.64 is the z-score for the 5th percentile.

After calculating the $5^{\text {th }}$ percentile and dividing the safety factor, the data was tabulated to compare it to other CLT grades from PRG 320 (Table 8). Within the table, values for grades V5 were listed alongside the converted values for the 2 grades of white-fir panels, \#2 \& better and \#3 \& better. The two grades for the white-fir (\#2 \& better and \#3 and better) showed to be similar as expected, due to the properties not having any statistical differences. The CLT grade V5 are design values for different species within the panel and PRG 320 defines it as follows:

- No. 2 Hem-fir lumber in all longitudinal layers and No. 3 Hem-fir lumber in all transverse layers

When compared to the V5 CLT grade, the effective stiffness of the white-fir (95 and $97 \times 10^{6} \mathrm{lbf}$ in2 / ft of width) showed to be higher than the V5 grade ($88 \times 10^{6} \mathrm{lbf}-\mathrm{in} 2 / \mathrm{ft}$ of width), while the effective flatwise bending moment (4551 and $4427 \mathrm{lbf}-\mathrm{ft} / \mathrm{ft}$ of width) also showed to be higher than the V5 ($1980 \mathrm{lbf}-\mathrm{ft} / \mathrm{ft}$ of width). Lastly, the shear capacity of the white-fir (3707 and $3838 \mathrm{lbf} / \mathrm{ft}$ of width) had a higher design value than the V5 grade ($550 \mathrm{lbf} / \mathrm{ft}$ of width).

Table 8: Summary of Converted Test Values from White-fir Data Compared to PRG 320 V5 Grade

Panel Type Type/Grade	Effective Flatwise Bending Moment $\left(F_{b} S\right)_{\text {eff }, f, 0}$ (lbf-ft/ft of width)	Effective Flatwise Stiffness (EI) ${ }_{\text {eff } f, 0}$ ($10^{6} \mathrm{lbf}-\mathrm{in} 2$ / ft of width)	Flatwise Shear Capacity (Minor) $\mathrm{V}_{\mathrm{s}, 90}$ (lbf/ft of width)
3 \& better Panels	4551	95	3707
2 \& better Panels	4427	97	3838
V5 CLT Grade	1980	88	550

Appendix:
White-fir Long Span Bending values for \#3 and Better Panels

Specimen	Panel	Grade	Maximum Load (lbf)	Modulus of Rupture (MOR) (psi)	Bending Moment $\left(F_{b} S\right)_{\text {eff }, f, 0}$ (lbf- $\mathrm{ft} / \mathrm{ft}$ of width)	Modulus of Elasticity (MOE) (psi)	Flatwise Stiffness $\begin{gathered} (\mathrm{El})_{\text {eff.f,0 }} \\ \left(1^{6} \mathrm{lbf}-\mathrm{in}^{2}\right) \end{gathered}$
6_A	6	3	9,461	5,282	14,980	1,425,766	100
6_B	6	3	7,297	4,074	11,554	1,228,487	86
6_D	6	3	6,500	3,629	10,292	1,206,859	85
6_F	6	3	9,563	5,339	15,141	1,238,041	87
6_G	6	3	7,244	4,044	11,470	1,090,954	77
7_A	7	3	7,089	3,958	11,224	1,287,038	90
7_B	7	3	10,770	6,013	17,053	1,461,845	103

7_D	7	3	5,919	3,305	9,372	$1,219,393$	86
7_F	7	3	11,844	6,613	18,753	$1,509,095$	106
7_G	7	3	8,339	4,656	13,203	$1,437,194$	101
8_A	8	3	11,430	6,381	18,098	$1,506,627$	106
8_B	8	3	8,041	4,489	12,732	$1,481,021$	104
8_D	8	3	9,713	5,423	15,379	$1,377,698$	97
8_F	8	3	10,048	5,610	15,909	$1,408,895$	99
8_G	8	3	7,218	4,030	11,429	$1,461,687$	103
9_A	9	3	11,151	6,226	17,656	$1,528,773$	107
9_B	9	3	11,139	6,219	17,637	$1,497,074$	105
9_D	9	3	8,612	4,808	13,636	$1,427,377$	100
9_F	9	3	8,097	4,521	12,820	$1,298,713$	91
9_G	9	3	8,914	4,977	14,114	$1,380,301$	97
10_A	10	3	7,981	4,456	12,637	$1,333,158$	94
10_B	10	3	12,383	6,914	19,606	$1,517,730$	107
10_D	10	3	7,802	4,356	12,353	$1,324,271$	93
10_F	10	3	8,051	4,495	12,747	$1,252,260$	88
10_G	10	3	11,970	6,683	18,953	$1,333,599$	94
12_A	12	3	9,751	5,444	15,439	$1,379,924$	97
12_B	12	3	10,229	5,711	16,196	$1,299,201$	91
12_D	12	3	7,285	4,067	11,535	$1,145,485$	80
12_F	12	3	6,633	3,703	10,502	$1,322,799$	93
12_G	12	3	9,328	5,208	14,769	$1,420,838$	100

White-fir Long Span Bending Values for \#2 and Better Panels

Specimen	Panel	Grade	Maximum Load (lbf)	Modulus of Rupture (MOR) (psi)	Bending Moment $\left(F_{b} S\right)_{\text {eff, }, 0}$ (lbf-ft/ft of width)	Modulus of Elasticity (MOE) (psi)	Flatwise Stiffness $\begin{gathered} (E I)_{\text {eff }, \mathrm{f}, 0} \\ \left(10^{6} \mathrm{lbf}-\mathrm{in}^{2}\right) \end{gathered}$
1_A	1	2	6,022	3,362	9,535	1,294,648	91

White-fir Short Span Bending Values for \#3 and Better Panels

White-fir Short Span Bending Values for \#2 and Better Panels

Specimen	Panel	Maximum			
Grade	Load (lbf)	Shear Stress $\mathbf{f}_{\mathbf{s}, \text { minor }}$ (psi)	$\mathbf{V}_{\mathbf{s}, 90}$		
$1 _2$	1	2	20,273	307	$(\mathrm{lbf} / \mathrm{ft}$ of width)

