

EMC MEETING 6/16 - STATUS REPORT

"PRE- AND POST-HARVEST FUEL LOADS AND IMPLICATIONS FOR SITE DEVELOPMENT AND PRODUCTIVITY"

DRIVER

Large, severe wildfires affect multiple values associated with forests

Residual slash from harvesting operations increases wildfire <u>hazard</u> by increasing the amount and continuity of surface fuels

Fuel management aims to reduce wildfire hazard and thereby risk of losses

Effectiveness of current fuel management practices is untested

RESEARCH QUESTIONS

- 1. How does fuel load differ between common silvicultural regimes types pre- and post-harvest?
- 2. Are fuel management practices effective at reducing fuel load while also supporting site regeneration and productivity?
- 3. How does fuel load change over time?
- 4. How do adjacent lands influence wildfire hazard (transmission analysis)?

STUDY AREA

- Moist redwood and mixed conifer forests in Northern California
 - Redwood
 - Douglas-fir
 - Tanoak

METHODS

- Pre-harvest data were collected in 2024 from sites with various harvesting systems and fuel treatments:
 - Selection and Variable Retention Harvest
 - Pile and burn in unit
 - Lop and scatter to 30" depth, pile and burn at landings
 - Broadcast burn
 - No treatment
 - Combinations with hack and squirt and hardwood removal
 - Commercial Thinning insufficient observations

PRE-HARVEST RESULTS

QUESTIONS?