Ecology and conservation of native bees in working forest landscapes

Dr. Jim Rivers College of Forestry Oregon State University

jim.rivers@oregonstate.edu

Three focal points for today

Overview of bee ecology and natural history

How do bee populations respond to wildfire severity?

How do bee communities change over time in timber plantations?

Pollinators are critical for supporting human food security and native biodiversity

~90% of wild flowering plants benefit from pollinators

OperationBee.com

There are upwards of 700 native bee species in Oregon!

The Douglas Complex burned in a mosaic of fire severity

Bee communities were enhanced by increased fire severity

We hypothesized that fire severity was positively correlated with bee reproduction

The blue orchard bee is ideal for assessing bee population response to wildfire

- Native species
- Females are solitary nesters
- Cocoons are readily available
- Use human-provided cavities

We quantified bee response to wildfire in spring 2017

Offspring production in burned forest was high

- >12,000 provisioned cells from n=32 stands (62 nest blocks)
- 86.9% provisioned nest cells developed into adults
- 10,492 adult offspring (~169 adults/block)

Slight increase in offspring production with greater fire severity

More female offspring produced with greater fire severity

>10% more females produced at high end of fire severity gradient

Females are ~15% larger and require ~25% more food than males

How does fire severity influence offspring provisioning?

Nicole Bell

Andy Moldenke

Female foraging was limited a small number of plant groups

Key project takeaways

Recently burned forest provides habitat for native bees

More female offspring were produced in high fire severity areas

Females foraged on similar plants across the fire severity gradient

How do bee communities change over time in timber plantations?

Intensive forest management accelerates canopy closure and alters plant communities

Focal questions

- Which bees occur in intensively managed conifer forests?
- How is bee diversity related to stand age and floral resources?
- How does bee community composition change over time?

We assessed bee diversity in n=60 intensively managed Douglas-fir stands

4 Landowners (ODF + 3 private industrial)

Sampled May-July 2018-2019; 3 rounds/year

We detected nearly 20% of the Oregon bee fauna on our sites!

Family Apidae (n = 6,662) Halictidae (n = 5,391) Andrenidae (n = 144) Megachilidae (n = 126) Colletidae (n = 104)

Stand age had a strong effect on bee abundance and richness

Floral density was more important than floral richness

Bee species in older stands were nested subsets of those in younger stands, not different species

Key project takeaways

- ~20% of Oregon's native bee species were found in intensively managed timber plantations
- Floral resources had a relatively small influence on native bee communities
- Bee communities were ephemeral due to rapid canopy closure

Three take-home points for today

Bees are critically important pollinators in PNW forests

Burned forests can provide good bee nesting habitat

Bee communities are ephemeral in timber plantations

Many thanks to...

Research funding and in-kind support

USDA AFRI Pollinator Health Fund, NSF Graduate Research Fellowship Program, Bureau of Land Management, USDA-ARS Pollinating Insects Research Unit, Mealey/Boise Cascade/Boone and the Crockett/Noble Endowment Fund at Oregon State University, College Forests at Oregon State University, Fish and Wildlife in Managed Forests Program at Oregon State University

Logistical support

S. Galbraith, R. Zitomer, J. Cane, R. Progar, M. Betts, N. Bell, K. DelToro, A. Moldenke, L. Best, A. Muldoon, G. McFadden, B. Hollen, C. Dunn, M. Hoe, J. Brimble, R. Showalter, B. Love, U. Kormann, Weyerhaeuser, ManuLife, Oregon Department of Forestry, Starker Forests, and many dedicated and hard-working field technicians

