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Abstract: This study quantifies the transpiration of encroached lodgepole pine (Pinus contorta var.
murryana (Grev. & Balf.) Engelm.) in a montane meadow using pre-restoration sap-flow measure-
ments. Lodgepole pine transpiration and its response to environmental variables were examined in
Rock Creek Meadow (RCM), Southern Cascade Range, CA, USA. Sap-flow data from lodgepole pines
were scaled to the meadow using tree survey data and then validated with MODIS evapotranspira-
tion estimates for the 2019 and 2020 growing seasons. A modified Jarvis–Stewart model calibrated
to 2020 sap-flow data analyzed lodgepole pine transpiration’s correlation with solar radiation, air
temperature, vapor pressure deficit, and soil volumetric water content. Model validation utilized 2021
growing season sap-flow data. Calibration and validation employed a Markov Chain Monte Carlo
(MCMC) approach through the DREAM(ZS) algorithm with a generalized likelihood (GL) function,
enabling parameter and total uncertainty assessment. The model’s scaling was compared with
simple scaling estimates. Average lodgepole pine transpiration at RCM ranged between 220.6 ± 25.3
and 393.4 ± 45.7 mm for the campaign (mid-July 2019 to mid-August 2020) and 100.2 ± 11.5 to
178.8 ± 20.7 mm for the 2020 partial growing season (April to mid-August), akin to MODIS ET.
The model aligned well with observed normalized sap-velocity during the 2020 growing season
(RMSE = 0.087). However, sap-velocity, on average, was underpredicted by the model (PBIAS = −6.579%).
Model validation mirrored calibration in performance metrics (RMSE = 0.1233; PBIAS = −2.873%).
The 95% total predictive uncertainty confidence intervals generated by GL-DREAM(ZS) enveloped
close to the theoretically expected 95% of total observations for the calibration (94.5%) and validation
(81.8%) periods. The performance of the GL-DREAM(ZS) approach and uncertainty assessment in this
study shows promise for future MJS model applications, and the model-derived 2020 transpiration
estimates highlight the MJS model utility for scaling sap-flow measurements from individual trees to
stands of trees.

Keywords: heat pulse velocity sap-flow; evapotranspiration; meadow encroachment; Markov Chain
Monte Carlo; DiffeRential evolution adaptive metropolis (DREAM) algorithm

1. Introduction

Montane meadows comprise a small proportion of the montane landscape, but their
hydrologic and ecologic functions make them indispensable environmental features. Mead-
ows promote biodiversity in forest ecosystems and enhance water storage in upper water-
sheds [1]. Meadows in the Sierra Nevada and Cascade Ranges face a myriad of threats, in-
cluding overgrazing, habitat degradation associated with recreation, fire prevention/regime
alteration, residential/commercial development, and habitat fluctuations tied to climate
change [2]. Meadow degradation typically results in drier soils with less organic matter,
lowered water tables, and changes in vegetation species [1,3]. Drier soil provides the op-
portunity for conifer encroachment, which refers to the replacement of meadow vegetation
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by conifer forest [2,4–7]. The past and ongoing decline of meadows due to conifer encroach-
ment suggests the implementation of restoration techniques to remove the encroached
conifers [2,8–10].

An approach for restoring meadow habitat with conifer encroachment is to remove the
conifers, which has been shown to increase seasonal soil moisture and groundwater levels
by reducing water losses from interception and transpiration (ET) [10–12]. This change
in the meadow water balance is envisioned to facilitate the recovery of meadow vegeta-
tion species generally controlled by soil water, encouraging biodiversity [2,9,13]. Conifer
transpiration represents a component of the pre-restoration water budget, suggesting the
importance of understanding its effect on meadow habitat.

A direct quantification of conifer transpiration enables the partitioning of ET in a
meadow water budget for the discovery of hydrologic change in meadow functions. A
study, 4 years following the removal of lodgepole pine (Pinus contorta var. murryana
(Grev. & Balf.) Engelm.), demonstrated an increase in soil moisture but no decrease in
summer and fall soil moisture, suggesting relatively similar transpiration from newly
established meadow vegetation during the summer growing season compared to the
lodgepole pine [10]. However, the loss of intercepted precipitation from the tree canopy
increased soil moisture in the meadow during the wet season and the beginning of summer,
when herbaceous meadow vegetation emerges. In other studies, meadows degraded
by woody vegetation (not conifers) had lower ET rates relative to their meadows with
herbaceous vegetation, further substantiating the improvement in hydrologic functions
necessary in meadow recovery [14,15].

Climate and energy variables of air temperature, solar radiation, and vapor pressure
deficit exert controls on conifer transpiration [16–18]. Like soil moisture control, our
knowledge of climatic and energy drivers of meadow conifer transpiration is insufficient
due to increasing temperatures and climatic variability. Montane meadows in the Sierra
Nevada and Southern Cascades are considered highly vulnerable to a changing climate
due to a shift toward greater rain precipitation inputs. This results in an increase in winter
runoff, compared to snow precipitation, decreasing soil moisture and groundwater during
spring and summer, the period of herbaceous vegetation emergence and growth [19,20].

This work presents results from heat-pulse sap-flow measurements of lodgepole pine
(Pinus contorta var. murryana (Grev. & Balf.) Engelm.) in a montane meadow prior to its
restoration by tree removal at Rock Creek Meadow (RCM). The goal of the work was to
estimate lodgepole pine transpiration in RCM for an approximately 1-year period and
to investigate environmental drivers of lodgepole pine transpiration during the growing
season. The research objectives for these pre-restoration results were: (1) Scale sap-flow tree
data to the meadow’s lodgepole pine transpiration and compare the transpiration estimates
to remote sensing-based moderate-resolution imaging spectroradiometer (MODIS) ET
estimates; (2) Calibrate and validate a modified Jarvis–Stewart (MJS) model to evaluate the
influence of environmental forcing on lodgepole pine transpiration, and; (3) Demonstrate
the utility and use of a Markov-Chain Monte Carlo (MCMC) approach via the Differential
Evolution Adaptive Metropolis (DREAM) algorithm and a generalized likelihood (GL)
function to parameterize the MJS model. This approach provides uncertainty estimates of
the MJS model to allow interpretation of the model efficacy.

This study will assist future research that seeks to better understand the efficacy of
vegetation removal on mountain meadows and similar environments while also consider-
ing the effects of changing climate on this land-management strategy. Additionally, to the
authors’ knowledge, sap-flow measurement has not been applied to a meadow-restoration
research problem. The comparison of sap-flow-based lodgepole pine transpiration to
MODIS ET estimates allows comments on the precision of this approach, broadening
the reach of this work to sap-flow practitioners in general. Lastly, the application of
the DREAM algorithm and GL function may assist future Jarvis-type transpiration (and
stomatal conductance) modeling efforts.
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2. Materials and Methods
2.1. Study Site

This research was done at Rock Creek Meadow (RCM), 40.329◦, −121.088◦, located
near Chester, California, USA in the southern Cascade Range. RCM is on private forest land
owned by Collins Pine Company (Figure 1). RCM is approximately 75 ha (185.3 ac), located
at an elevation of 1525 m (5000 ft). The meadow underwent restoration by removal of
lodgepole pine beginning in August 2020. The majority of the lodgepole pine was removed
from RCM during fall 2020. Average lodgepole pine prior to removal had a basal area of
22.34 and 29.54 m2/ha for the eastern and western meadow portions, respectively (Figure 1).
A wildfire, the Dixie Fire (Plumas County, CA, USA), burned around and partially through
RCM in August 2021.
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Figure 1. RCM near Chester, CA, including measurement locations. The sap-flow plot insert,
displayed at a larger scale, shows the locations for the eight lodgepole pine (Pinus contorta var.
murryana (Grev. & Balf.) Engelm.) (LP) instrumented for sap-flow measurement.

RCM climate is characterized by wet, cool winters and dry, warm summers. The
average yearly precipitation from monthly normals is 873 mm (NOAAs ID USC00041700,
1981–2010). Most of the precipitation occurs during winter. RCM is generally classified as a
dry meadow based on its observed hydrology and vegetation according to one meadow
classification system [21]. Mesic meadow conditions exist in the western portion adjacent
to Rock Creek, an intermittent watercourse.

RCM is in the Cascade Range and Modoc Plateau geomorphic provinces, with the
Sierra Nevada geomorphic province just south. The geologic material is mapped as Pleis-
tocene or Pliocene volcanic basalt rock. However, basaltic and rhyolitic rock has been
observed at the meadow site. RCM consists of loamy textured soils. The western portion
of the meadow (as separated by the road through the meadow, adjacent to Rock Creek, is
mapped as Mountmed loam, 0 to 2 percent slopes. The eastern portion of the meadow is
mapped as Inville very gravelly sandy loam, 0 to 5 percent slopes. Soil samples collected
from the meadow coinciding with the Mountmed loam map unit at depths of less and
greater than 20 cm textural classes (US Soil Taxonomy) of loam (31% sand, 44% silt, clay
25%) and silty clay loam (18% sand, 53% silt, 29% clay). Soil samples collected from the
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meadow coinciding with the Inville very gravelly sandy loam map unit returned textural
classes of sandy loam (50% sand, 37% silt, 13% clay) and loam (48% sand, 45% silt, 6% clay)
at <20 cm and >20 cm depth, respectively.

2.2. Field Methods and Data

The field methods for this study include (1) measurement of lodgepole pine sap-
flow, (2) measurement of meadow hydrometeorological conditions, linking lodgepole
pine sap-flow with environmental variables, and (3) an interpretation of the spatial extent
of lodgepole pine transpiration in a simple scaling approach using a plot tree survey.
The sap-flow and hydrometeorological measurements served as calibration, input, and
validation data for a modified Jarvis–Stewart model linking lodgepole pine sap-flow with
environmental variables. Study methodology is discussed in further detail in [22].

2.2.1. Sap-Flow Measurements

Sap-flow was measured in lodgepole pine using three-probe configuration heat-pulse
velocity sensors (East 30 Sensors, Pullman, WA, USA) following the design in [23]. The
sensors were three 35 mm-long stainless-steel needles 6 mm apart. The middle needle
consisted of an Evanohm heater (Carpenter Technology Corp., Philadelphia, PA, USA).
Both the downstream and upstream needles featured three 10K precision thermistor sensors
at distances of 5 mm, 17.5 mm, and 30 mm, respectively, from the probe shroud, allowing
heat-velocity measurement at three radial depths.

The probes were installed in a 25 m-by-25 m plot in eastern RCM, hereafter referred
to as the sap-flow plot (SFP) (Figure 1) in July 2019. Sap-flow instruments were removed
from their respective trees in August 2020, corresponding with the beginning of restoration.
The probes were moved to western RCM in May 2021 to provide validation data for
the calibrated model (Figure 1 and Table 1). Eight lodgepole pines were selected for
instrumentation within the SFP based on their diameter at breast height (DBH) (10–40 cm)
and proximity to the data logger (Figure 1). Only six trees were instrumented due to sensor
availability. The probes remained in the model validation trees until early July 2021.

Table 1. Sub-population (strata) and population (RCM) estimates of stem density, basal area, and
sapwood (SW) basal area derived from the tree survey conducted at RCM via stratified random
sampling. Parenthetical values represent one standard error. LP = lodgepole pine.

E. Stratum W. Stratum RCM

Area (ha) 21.125 22.440 43.565
No. Random Plots 5 5 10
Stem Density (ha−1) LP All DBH 1616.00 (513.25) 1641.60 (427.31) 1629.19 (291.43)
Stem Density (ha−1) LP DBH > 10 cm 275.20 (32.16) 691.20 (201.65) 489.48 (92.58)
Stem Density (ha−1) LP DBH 2.5–10 cm 1340.80 (495.57) 950.40 (293.92) 1139.71 (248.78)
Stem Density (ha−1) Other tree species 112.00 (60.08) 115.20 (44.22) 113.65 (32.42)
Stem Density (ha−1) All tree species 1728.00 (493.49) 1756.80 (411.68) 1742.84 (280.46)
Basal Area (m2 ha−1) LP 15.73 (1.21) 30.56 (6.27) 23.37 (2.89)
Basal Area (m2 ha−1) Other tree species 6.61 (3.11) 5.77 (2.38) 6.17 (1.70)
Basal Area (m2 ha−1) All tree species 22.34 (3.58) 36.33 (6.16) 29.54 (3.18)
SW Basal Area † (m2 ha−1) LP 10.77 (0.84) 20.90 (4.01) 15.99 (1.86)

† Estimated using regression equations for lodgepole pine sapwood and bark depth vs. DBH.

Heat-pulse velocity [L T−1] was determined using the heat ratio method (HRM) based
on [23,24]:

vh =
β

x
ln
(

∆Td
∆Tu

)
(1)

where vh is the heat-pulse velocity (cm s−1), β is the thermal diffusivity of green (fresh)
sapwood (cm s−1), x is the distance between the heater and either temperature probe
(0.6 cm), and ∆Td and ∆Tu are changes in temperature 60 s following heat pulse release
at equidistant downstream and upstream points, respectively The accuracy of the heat-
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pulse velocity calculation was improved by calculating site-specific thermal diffusivity for
lodgepole pine sapwood and correcting for probe misalignment and tree wounding.

Thermal diffusivity was calculated for lodgepole pine [25]. A sapwood core was
removed from each of the eight instrumented trees in the SFP in August 2020 using an
increment borer (Haglöf, Sweden). Cores were also taken from the six instrumented trees
at the validation site and two non-instrumented trees nearby in May 2021. The average
thermal diffusivity from all samples (n = 16, 2.44 × 10−3 ± 2.3 × 10−4 cm2/s) was used to
calculate heat velocity for each tree.

The procedure [25] also informed the values of the water content of sapwood (ratio
of water weight to dry wood weight), (mc ) and the basic density of sapwood (ρb) needed
to calculate sap-velocity. Constant values of mc = 1.00 ± 0.26 and ρb = 0.53 ± 0.11 g cm−3

were used.
Probe misalignment was corrected using the zero-flow approach [23]. The approach

assumes that vh= 0 cm hr−1 when there is no biophysical force driving transpiration. Zero-
flow events were flagged when it was pre-dawn, soil moisture was close to saturation, and
the vapor pressure deficit was close to zero, and they were used to correct for misaligned
probes. Two instrumented trees between the SFP and model validation sites had severe
probe misalignment at the 17.5 mm and 30 mm measurement depths. These data were
abandoned in favor of the 5 mm depth data because of the uncertainty associated with
correcting badly misaligned probes [23].

The published correction factors and equation were used to correct for wounding [23].
The wound correction was performed using the coefficients derived for a range of wound
diameters corresponding to the −0.6, 0, and 0.6 cm probe configuration, where probes
are 1.3 mm in diameter. Wounding corrections were only applied to the heat-velocity
data collected in the SFP to use directly for lodgepole pine transpiration estimation. The
wounding correction was unnecessary in the model validation deployment because the
correction is a linear factor and is removed by the data normalization applied in our
modeling approach. The average wound diameter was 2.4 ± 0.3 mm for the eight trees.

Corrected heat-pulse velocity (vc) was converted to sap-velocity (vs ) [24] using
the equation:

vs =
ρb
ρs

(
mc +

cdw
cs

)
vc, (2)

where ρb is the basic density of sapwood [M L−3], ρs is the density of sap, assumed equal to
water, mc is water content of sapwood, cs is the specific heat capacity of sap, assumed equal
to water (4.186 kJ kg−1 K−1), and cdw is the specific heat capacity of oven-dry sapwood (kJ
kg−1 K−1). The normalized specific heat capacity of dry sapwood ( cdw

cs
) was calculated as a

function of temperature [26–28]. Other works have assumed the normalized specific heat
capacity as constant with a value of 0.33 (using cdw = 1.380 kJ kg−1 K−1) [29], but we adopt
the former approach.

2.2.2. Meadow Hydrometeorological Conditions

Volumetric soil water content (VWC) and climate data were concurrently monitored
with the sap-flow measurements at the study site. VWC was monitored at seven locations
in RCM at depths ranging from 5 to 100 cm from the ground surface (Figure 1). VWC was
computed from measured dielectric (relative) permittivity using the Topp equation [30].
A calibration check, comparing TDR probe values to laboratory gravimetric measure-
ments, was performed in July 2020 using soil samples collected at 30 cm of depth in the
vicinity of set-ups RCSM1, RCSM2b, and RCSM5. The two methods were found to be in
good agreement.

A climate station (Onset) with sensors for air temperature, wind speed, wind direction,
relative humidity, barometric pressure, and net shortwave solar radiation was installed
in the SFP on 4 September, 2019 (Figure 1). Climate data prior to the installation of the
station at RCM were taken from a station located in another research meadow 30 km west
of RCM at similar elevation (1463 m) [10,12]. Daily precipitation data were collected from
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the Chester, CA NOAA station (station ID USC00041700) part of the Global Historical
Climatology Network daily database [31].

2.2.3. Tree Survey

A tree survey at RCM was done in July 2020. Measurements of lodgepole pine
diameter at breast height (DBH), sapwood depth (Ds), and bark depth (Db) were collected
in 10 random plots (625 m2) as part of a stratified random sampling design (STRS) (Table 1).
The measurements were used to develop individual relationships of Db and Ds versus
lodgepole pine DBH using simple linear regression (Figure 2). The relationships were
used to scale sap-velocity measurements in the SFP to trees in the random plots equally
allocated between east and west strata of RCM (Figure 1). The stratification boundary
was based on auxiliary information about site vegetation, soil moisture, and groundwater
conditions. The STRS approach was chosen to ensure that the lodgepole pine forest at
RCM was adequately sampled and potential decreases in the standard error associated
with population parameter estimates.
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versus DBH in log–log space, both including simple linear regressions equation, R2, and line of best
fit. Data (n = 47) in (a,b) are from cored trees sampled in the 10 random sample plots.

DBH was also measured for all lodgepole pine in the SFP and the three (3) 25 m by
25 m plots encompassing RCSM1, RCSM3, and RCSM5. The plots containing soil-moisture
instruments were used for our extrapolation approach with the calibrated modified Jarvis–
Stewart model.

2.3. Sap-Flow Modeling

We modeled sap-velocity from environmental variables to assess drivers of transpira-
tion during one growing season. Soil moisture content was incorporated into the modelling
to investigate soil water limitations. The calibrated model was used to estimate transpira-
tion in select plots with soil-moisture sensors during the 2020 partial growing season (part
of a dry year). This enabled exploration of the inclusion of spatially variable soil moisture
in RCM-influenced sap-flow scaling in contrast to scaling informed only by the tree survey.

2.3.1. Model Data

The Modified Jarvis–Stewart (MJS) model was calibrated and validated using the
average sap-velocity from instrumented lodgepole pine trees. We computed average sap-
velocity from the measurement depth in each tree that was most frequently the largest (i.e.,
active depth) and averaging these values across trees [17].
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Model calibration and validation were performed using normalized average sap-
velocity (vs,n = vs/vs,max, dimensionless). Normalization to eliminate differences in mag-
nitude between the average sap-velocity measurements at the SFP and validation locales
during their respective monitored growing seasons was performed, thus facilitating an
evaluation of model performance. We follow the normalization procedure by dividing
the hourly average sap-velocity measurements (vs) by the average of the hourly 99.5th-
percentile sap-velocity values from each instrumented tree’s active depth (vs,max). The
observation time series was reduced to an hourly interval [17]. Model forcing data con-
sisted of hourly incoming solar radiation, vapor pressure deficit (VPD), air temperature,
and VWC observations. Model calibration used normalized average sap-velocity and input
data collected between 7 April and 17 August, 2020, while model validation used data
collected between 1 May and 6 July 2021. 7 April was chosen as the start date for calibration
modeling because this was the day the diurnal (maximum during the day and minimum at
night) pattern indicative of transpiration returned to our sap-flow measurements. There
would have been a longer period of data for the validation period. However, the sap-flow
logger and probes were destroyed in the Dixie Fire in early August 2021. Both calibration
and validation datasets excluded times where solar radiation was 0 W/m2 (nighttime) or
precipitation occurred, as done in other studies implementing an MJS model [17,32–34].

2.3.2. Modified Jarvis–Stewart Model

A modified Jarvis–Stewart (MJS) stomatal conductance model was used to predict
normalized average sap-velocity from environmental variables [35,36]. The Jarvis–Stewart
model modification adhered to the assumptions from [14]. Lodgepole pine transpiration
(T), [L T−1] is assumed to be proportional to the product of tree bulk canopy conductance
(gbc) [L T−1kPa−1], and the leaf-to-air vapor pressure deficit (D),

T = gbcD (3)

where D is VPD (kPa). Lodgepole pine transpiration is also assumed to be proportional to
the normalized average sap-velocity (dimensionless),

T = αvs,n (4)

where α [L T−1] is the product of maximum sap-velocity, sapwood cross-sectional area,
and the profile of sap-velocity as a function of radius. Following the Jarvis–Stewart model,
gbc is modeled as maximum bulk canopy conductance (gbcmax) reduced by environmental
stress functions including fR, fD, fTa , and f (θv). Combining Equations (3) and (4) and
substituting the result into Equation (5) yields

vs,n =
gbcmax

α
D ∗ fR ∗ fD ∗ fTa ∗ f (θv) (5)

The four stress functions in Equation (5) are empirically based and were selected from
the literature. We chose functions used to predict conifer transpiration in an MJS model
context that best fit our calibration dataset. Solar radiation stress was represented using
Equation (6)

fR =
R

Rmax

(
Rmax+kR

R + kR

)
(6)

where R is incoming solar radiation (W/m2), kR is a fitting parameter (dimensionless), and
Rmax is the maximum observed R during the model-calibration period (W/m2) [33]. The
VPD response was represented as

fD =
1

1 + D/D0
(7)
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where D is VPD (kPa) and D0 is a parameter describing the sensitivity of sap-velocity to
VPD (kPa) [17,37–39]. We use a function for air temperature:

fTa = e−ka
(Ta−T0)

2

Ta+T0 (8)

where Ta is air temperature (◦C), ka is a fitting parameter (dimensionless), and T0 is a
parameter representing the optimal air temperature for sap-velocity after which sap-velocity
begins to decline due to temperature stress (◦C) [40]. Lastly, sap-velocity modulation by
volumetric soil water content (VWC) was represented by

f (θv) =
1

1 + e−ks(θv−θ0)
(9)

where ks is a parameter describing the rate of decrease in sap-velocity under limiting VWC
conditions (dimensionless), and θ0 is the VWC value where sap-velocity decline is centered
(dimensionless) [17,41].

Posterior distributions of the parameters contained in Equation (6) were identified
using Markov Chain Monte Carlo (MCMC) simulation. The MCMC approach was executed
using a version of the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm
known as DREAM(ZS) [42]. The approach allowed identification of a maximum likelihood
(ML) parameter set used to predict the normalized average sap-velocity for the validation
site during the 2021 partial growing season. The MCMC approach and determined posterior
distributions are available in [22].

2.4. Scaling of Sap-Flow and Model-Informed Transpiration Estimates

Lodgepole pine transpiration at RCM was estimated using a bottom-up sap-flow scal-
ing approach [17,43–45]. The scaling required estimation of volumetric sap-flow, hereafter
referred to as sap-flow, (Q) [L3 T−1]. Sap-flow scaling was based on measurements taken
in the SFP between 21 July 2019, and 16 August 2020. We also describe a scaling variation
performed using the calibrated MJS model ML parameter estimates between 7 April 2020
and 16 August 2020.

2.4.1. Tree Sap-Flow

The tree sap-velocity measurements were used to estimate sap-flow, assuming a change
in sap-velocity with increasing sapwood depth. The sap-velocity radial profile, sampled at
multiple depths, was not well constrained in the inner portion of the sapwood approaching
the heartwood. The probe sensor depth was 30 mm; all of the instrumented trees had
sapwood that exceeded this depth [21]. Therefore, we estimate sap-flow using different
assumptions for the sampled and non-sampled sapwood in the instrumented trees.

For the sapwood sampled, we estimated sap-flow using a weighted average ap-
proach [46]. Sap-flow for the sapwood not sampled was calculated with Equation (10) [17].

Q = 2πvs

∫ rout

rin

r fp(r)dr (10)

where r is the radial position on the cross-section of the tree (not including bark), rin
(cm) is the radial position of the heartwood–sapwood boundary, rout (cm) is the radial
position of the innermost annulus bounding the sapwood not sampled by the probe, vs is
the sap-velocity provided by the innermost measurement point (cm h−1), and fp(r) is a
dimensionless linear function between 0 and 1 describing the radial profile of sap-velocity
between the innermost sap-velocity measurement point and heartwood. The sap-velocity
radial profile was approximated as in [17]. The profile is assumed to decline linearly
with depth, based on previous research that sap-velocity is lower in the inner sapwood
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compared to the outer sapwood in conifers [47–49]. We employ three simple variants of a
sap-velocity profile:

fp,1(r) = 1, fp,2(r) = 1 +
1
2

(
r − rout

rout − rin

)
, and fp,3(r) = 1 +

(
r − rout

rout − rin

)
, (11)

where fp,1(r) retains constant sap-velocity across the sapwood, fp,2(r) decreases sap-
velocity linearly to half of sap-velocity at the heartwood–sapwood boundary, and fp,3(r)
decreases sap-velocity linearly to zero at the heartwood–sapwood boundary [17]. Sap flow
for each instrumented tree was calculated as the sum of the estimate [46] and Equation (10).
For measurements of tree DBH, sapwood depth, and bark depth used for calculations
see [22].

2.4.2. Plot and Meadow Landscape Sap-Flow

Sap-velocity measurements made in the eight instrumented trees were extrapolated
to the SFP and the 10 random plots part of the STRS. Plot sap-flow (Qp, cm3 h−1) was
estimated by summing individual tree sap-flow for all non-instrumented lodgepole pine (i)
in a plot. Plot sap-flow was calculated three times for each plot using the same sap-velocity
profiles provided by Equation (12) for fp(r):

Qp = 2πvs∑N
i=1

∫ rout,i

rin,i

r fp(r)dr (12)

where vs (cm h−1) is average sap-velocity from the instrumented lodgepole pine in the
SFP, rin,i is the radial position of the heartwood–sapwood boundary (cm), and rout,i is
the radial position of the bark–sapwood boundary (cm). Plot transpiration (T) (mm h−1)
was calculated as a flux by dividing plot sap-flow by the plot area (625 m2). Lastly,
the calibrated MJS model was used to estimate transpiration in the plots containing soil
moisture instruments RCSM2b (SFP), RCSM1, RCSM3, and RCSM5. Normalized average
sap-velocity (dimensionless) was predicted with the ML parameter estimates [21] and used
to estimate plot sap-flow:

Qp = 2πvs,maxvs,n∑N
i=1

∫ rout,i

rin,i

r fp(r)dr (13)

where vs,max (cm h−1) is maximum vs and vs,n (dimensionless) is predicted average normal-
ized sap-velocity for trees in a plot. Transpiration scaling informed by the calibrated MJS
model was performed for the four plots between 7 April and 16 August, 2020 (2020 partial
growing season). Volumetric soil water content input data for this period were provided
by the respective soil moisture set-up in each plot, while the climate station in the SFP
provided climate input data.

3. Results
3.1. Environmental Conditions and Sap-Velocity Measurements

The environmental conditions during SFP measurements are displayed (Figure 3).
Average daily air temperature varied between −7.94 ◦C in December 2019 and 21.01 ◦C
in August 2020 (Figure 3d). The maximum and minimum daily averages aligned with
the maximum and minimum monthly temperature averages. The annual cycle of VPD
followed temperature, peaking in August 2019 and July 2020 (Figure 3d). Maximum solar
radiation was in late June in both years, corresponding with the summer solstice. The lowest
daily solar radiation values were on days with high cloud cover, often corresponding with
precipitation events (Figure 3b). Climate and energy conditions were similar between both
growing seasons. A total of 1102 mm of precipitation fell during the 2019 WY overlapping
with the beginning of SFP measurement, while 512 mm fell during the 2020 WY. Most
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of the precipitation was snow, making the majority of reported yearly totals as snow–
water equivalents.
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The average sap-velocity for lodgepole pine followed seasonal patterns throughout
the monitoring period (Figure 3a). Sap-velocity followed a diurnal pattern with midday
peaks at the beginning of the campaign in July and August 2019, coinciding with high daily
VPD, solar radiation, and air temperatures.

The average daily sap-velocity was highest in the 2019 summer (11.54 ± 1.89 cm h−1)
compared to other seasons. The average daytime sap-velocity for the 2019 summer was
greater than the 2020 summer velocity (6.05 ±1.73 cm h−1). From 1 April to 16 August 2020
(2020 partial growing season), the average daytime sap-velocity was 5.11 ± 2.15 cm h−1.

3.2. MJS Model ML Parameter Estimates and Response to Environmental Variables

The maximum likelihood (ML) estimates provided well-defined functional depen-
dencies to describe the relationships between normalized average sap-velocity and envi-
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ronmental drivers. The non-limited functional dependencies (solid lines) representing the
prediction of normalized average sap-velocity for a particular stress function, when all other
stress functions are fixed at a value of 1, are shown (Figure 4). Additional functional depen-
dencies (dotted and dashed lines) representing how the non-limited curves for each stress
function are adjusted with changes in environmental drivers in the model. For example, the
prediction of normalized average sap-velocity from the air temperature function responds
to different values of VWC. The air temperature function would be adjusted further depend-
ing on values of incoming solar radiation and VPD. The resulting functional dependencies
suggest varying degrees of sensitivity of sap-velocity to environmental drivers.
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Figure 4. Hourly vs,n response to environmental drivers for the calibration period: (a) vs,n vs. solar
radiation with different values of VPD; (b) vs,n vs. VPD with different values of VWC; (c) vs,n

vs. air temperature with different values of VWC; and (d) vs,n vs. VWC with different values of
air temperature.

The response to incoming solar radiation by normalized average sap-velocity is fit by
the shape parameter kR, describing the curvature of the assumed asymptotic relationship
between sap-velocity and solar radiation. The ML estimate of kR is low, within its prior
uniform distribution range. Accordingly, the solar radiation functional dependency shows
saturation toward vs,n= 1 at approximately 100 W m−2 (Figure 4a). Normalized average
sap-velocity rapidly increases at low values of solar radiation and fails to increase at high
values of solar radiation.

The functional relationships of normalized average sap-velocity and VPD, air temper-
ature, or VWC are tightly coupled to the observed data (Figure 4b,c). Average sap-velocity,
as controlled by D0 and gbcmax/α, gradually increased with VPD, plateauing at high values
(Figure 4b,c). The plateauing effect at high VPD values is exaggerated when other environ-
mental drivers are associated with non-limited sap-velocity (e.g., VWC > 0.35, Figure 4b).
The non-limited VPD functional dependency does not reach vs,n = 1 over a realistic domain
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of VPD values (Figure 4b). The air temperature functional dependency shows the greatest
rate of normalized average sap-velocity increase between 0 and 25 ◦C, with maximum nor-
malized average sap-velocity after approximately 30◦C. The upper threshold, 41.88 ◦C, is
represented by T0, after which sap-velocity is assumed to decrease from temperature stress.
The VWC functional dependency results in a decline of normalized average sap-velocity
when soil moisture is at θ0 = 0.184. The VWC function indicates little sap-velocity limitation
when the VWC is greater than 0.25 (Figure 4d). The ks parameter controls the rate of decline
in the function with decreasing VWC values, interpreted as limiting sap-velocity.

A qualitative point of comparison for the normalized average sap-velocity response
between the calibration and validation periods is shown (Figure 5). Notably, the functional
dependencies from the ML parameter estimates (calibration) for incoming solar radiation,
VPD, and air temperature were similar in their coupling to observations from the validation
period (Figure 5). We were unable to evaluate the validation performance for a full range of
soil moisture conditions, interpreted as limiting by the calibration period, due to wildfire
(Dixie Fire) destroying the sap-flow equipment in early August 2021.
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radiation with different values of VPD; (b) vs,n vs. VPD with different values of VWC; (c) vs,n

vs. air temperature with different values of VWC; and (d) vs,n vs. VWC with different values of
air temperature.

3.3. MJS Model Performance

The variation in the observed data was better explained by the model during the
calibration period (RMSE = 0.087) compared to the validation period (RMSE = 0.1233).
The RMSE of 0.087 for calibration equates to an average sap-velocity of 1.25 cm h−1

after removing the normalization constant (vs,max = 14.33 cm hr−1). The ML parameter
estimates had an average tendency to underpredict normalized average sap-velocity, with
negative PBIAS for both periods (PBIAS = −6.579% for calibration and PBIAS = −2.873%
for validation).
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Additional model performance indicators are provided in Figure 6. There is a strong
linear relationship between observed and predicted values for the calibration period, with
a slope of linear regression close to 1 (Figure 6a). The linear fit for the validation is also
strong (slope = 0.9), but there is a greater scatter around the simple linear regression (SLR)
line, corresponding with the larger RMSE computed for this period relative to calibration
(Figure 6b). The linear regressions coupled with the 1:1 line show the negative PBIAS
for both periods. The SLR regression line intersects and dips below the 1:1 line at an
approximate observed vs,n value of 0.18 for the calibration period and 0.33 for validation,
highlighting the tendency of the MJS model to underpredict high vs,n values.
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(dashed green) and SLR line (blue).

The parameter uncertainty bounds associated with model predictions for the calibra-
tion and validation periods are presented (Figure 6). The model generally underpredicted
midday peaks. The inset graphs in Figure 6 emphasize that the parameter uncertainty
bands frequently do not predict the measured midday observations.

The parameter uncertainty associated with model predictions for the calibration and
validation periods is presented in Figure 7. Model underprediction was most common around
midday peaks. The inset graphs in Figure 7 emphasize that the parameter uncertainty bands,
let alone the ML parameter estimates, frequently fail to envelop midday observations.

Figure 8 shows a 95% total predictive uncertainty confidence interval for the calibration
and validation periods, determined using the GL function error model parameter posterior
distributions and the algorithm [50]. The predictive uncertainty bands envelop close to the
theoretically expected 95% of total observations for the calibration period (94.5%).

The interval envelops a comparable 81.8% of total observations from the validation
period. Parameter uncertainty is minimal relative to the total predictive uncertainty for
both calibration and validation. Accordingly, almost all midday observations are captured
in the total uncertainty band for both periods.



Forests 2024, 15, 1786 14 of 27

Forests 2024, 15, x FOR PEER REVIEW  15 of 28 
 

 

 
Figure 7. Ninety-five percent parameter uncertainty confidence interval and normalized average sap-velocity observations (red points) for (a) 
calibration and (b) validation periods. Gaps in the time series represent observation data that were removed from the analysis due to precipitation 
or it being nighttime. Insets show 10 days of sap-velocity observations, corresponding to 95% confidence parameter uncertainty interval for each 
period. 

Figure 7. Ninety-five percent parameter uncertainty confidence interval and normalized average sap-velocity observations (red points) for (a) calibration and
(b) validation periods. Gaps in the time series represent observation data that were removed from the analysis due to precipitation or it being nighttime. Insets show
10 days of sap-velocity observations, corresponding to 95% confidence parameter uncertainty interval for each period.



Forests 2024, 15, 1786 15 of 27Forests 2024, 15, x FOR PEER REVIEW 16 of 28 
 

 

 
Figure 8. Ninety-five percent total predictive uncertainty confidence interval and normalized average sap-velocity observations (blue and red points) 
for (a) calibration and (b) periods. Insets show 10 days of sap-velocity observations, corresponding to 95% confidence parameter uncertainty interval 
for each period.

Figure 8. Ninety-five percent total predictive uncertainty confidence interval and normalized average sap-velocity observations (blue and red points) for
(a) calibration and (b) periods. Insets show 10 days of sap-velocity observations, corresponding to 95% confidence parameter uncertainty interval for each period.



Forests 2024, 15, 1786 16 of 27

3.4. Simple Transpiration Estimates

Total transpiration and standard errors for RCM were calculated through the STRS
design. The average total transpiration for RCM was estimated between 220.6± 25.3 mm
and 393.4 ± 45.7 mm, given by fp,3(r) and fp,1(r), respectively, for the entire monitoring
period (Table 2; Figure 9).

Table 2. Seasonal mean transpiration (T) total estimates by sap-velocity radial profile for east stratum,
west stratum, and RCM. Second-row values for each season represent one standard error of the mean.
GS = growing season.

Season
Total T, mm (East) Total T, mm (West) Total T, mm (RCM)

fp,1(r) fp,2(r) fp,3(r) fp,1(r) fp,2(r) fp,3(r) fp,1(r) fp,2(r) fp,3(r)

Summer 2019 † 78.1
6.1

61.0
4.8

43.9
3.5

151.3
29.0

118.0
22.5

84.7
16.1

115.8
13.4

90.3
10.4

64.9
7.4

Fall 2019 55.8
4.4

43.6
3.5

31.4
2.5

108.2
20.8

84.4
16.1

60.6
11.5

82.8
9.6

64.6
7.5

46.4
5.3

Winter 2019 † 7.1
0.6

5.5
0.4

4.0
0.3

13.7
2.6

10.7
2.1

7.7
1.5

10.5
1.2

8.2
1.0

5.9
0.7

Spring 2020 42.8
3.4

33.4
2.6

24.1
1.9

82.9
15.9

64.7
12.4

46.4
8.8

63.5
7.4

49.5
5.7

35.6
4.1

Summer 2020 † 81.5
6.4

63.7
5.0

45.8
3.7

157.9
30.3

123.1
23.5

88.4
16.8

120.8
14.0

94.3
10.9

67.8
7.8

Partial GS 2020 † 120.5
9.4

94.2
7.4

67.8
5.5

233.6
44.8

182.2
34.8

130.7
24.8

178.8
20.7

139.5
16.1

100.2
11.5

† Transpiration estimate incomplete for season.
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Figure 9. Daily average transpiration (T) estimated for the random plots in the (a) east stratum and
(b) west stratum by sap-velocity radial profile. Ribbons represent ± 1 standard error of the daily mean.

Lodgepole pine transpiration estimates were compared to MODIS-derived evapotran-
spiration (MODIS ET) (MOD16A2GF product) 8-day composite estimates for the 2019 and
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2020 calendar years via the AppEEARS application [51,52]. The timing of peak sap-flow
predicted transpiration and MODIS ET was similar in the 2019 growing season (Figure 10).
MODIS ET peaked from 12 July through 19. The highest 8-day transpiration from the 2019
growing season was 28 July through 4 August. This sum was similar to the composite
provided for 20 July through 27, which summed 1 less day due to the SFP campaign begin-
ning on 21 July 2019. Transpiration declines for the 2019 growing season began in early 21
August for both estimates. The timing of peak MODIS ET during the 2020 growing season
was more dissimilar to peak lodgepole pine transpiration. Lodgepole pine transpiration
peaked from 17 June through 24, while the largest MODIS ET composite was from 24 May
through 31.
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Figure 10. Time series of 8-day composite MODIS ET estimates compared with 8-day composite
lodgepole pine transpiration (T) estimates by sap-velocity radial profile for (a) RCM, (b) east stratum,
and (c) west stratum. Ribbons represent ±1 standard deviation of the MODIS ET 8-day composite,
weighted mean.

The difference between the 8-day MODIS ET composites and the lodgepole pine
transpiration estimates (residuals) were mostly positive values (Figure 11). The east stratum
had the highest positive residuals. RCM and east and west stratums had positive residuals
that gradually increased during winter 2020 into the spring before decreasing toward 0 mm
in the summer. A similar trend was present between summer and fall in 2019. Large
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negative residuals are observed for the west stratum in late July and early August 2019,
especially for fp,1(r) and fp,2(r). Negative residuals are also seen for RCM and the east
stratum in these months, albeit not as extreme.
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stratum, and (c) west stratum.

3.5. MJS-Informed Transpiration Estimates

The MJS model was used to estimate transpiration for the RCM plots containing
soil-moisture measurements (Table 3, Figure 12). The transpiration estimates were slightly
greater than MJS estimates for the SFP due to the model underpredicting observed sap-
velocity. The MJS model does not consider nighttime transpiration.
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Table 3. Comparison of lodgepole pine transpiration totals in soil moisture-containing plots informed
by the calibrated MJS model and simple scaling for the period of 7 April through 16 August 2020.

Total T, mm (MJS) Total T, mm (Simple)

Plot fp,1(r) fp,2(r) fp,3(r) fp,1(r) fp,2(r) fp,3(r)

SFP
(RCSM2b) 65.2 56.7 48.1 69.3 59.9 50.6

RCSM1 58.3 45.0 31.7 90.0 69.5 48.9
RCSM3 70.9 55.5 40.2 85.6 67.2 48.5
RCSM5 320.3 248.1 175.9 303.9 235.4 167.0
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The MJS transpiration estimates differed more noticeably from those produced by
simple scaling in plots RCSM1, RCSM3, and RCSM5. RCSM1 featured the most extreme
differences in estimated transpiration. RCSM1 VWC went below 18.4% (ML θ0 parameter
estimate) on 6 July, 2020, and continued to diminish into the growing season, leading to low
predictions of sap-velocity and low transpiration estimates (Figure 12b). VWC went below
18.4% in RCSM3 on 27 July, creating steadily declining transpiration estimates (Figure 12c).
RCSM5 was the only plot to have transpiration estimates greater than the simple scaling.
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4. Discussion
4.1. Assessment of Simple Lodgepole Pine Transpiration Estimates

As stated previously, one goal of this work was to estimate lodgepole pine transpiration
in RCM for an approximately 1-year period. Sap-flow measurements were collected in the
same eight trees in the SFP between July 2019 and August 2020. Many studies cite inter-tree
variation in sap-flow measurements as a major source of transpiration spatial and temporal
variation, with modulators including micro-meteorology, stand structure, topography,
and soil moisture conditions [39,53–58]. The potential of soil moisture and sap-velocity
spatial autocorrelation is of consideration at RCM because of the discrepancy in soil water,
especially in the late growing seasons when we observed earlier soil drying in eastern RCM
compared to western RCM. At the SFP scale, we observed differences in the lodgepole pine
average sap-velocity measurements between the two partial growing seasons (Figure 3a).
The inter-growing season variability in average sap-velocity is likely attributable to soil
moisture differences between years due to differences in precipitation, as other climatic and
energy conditions were similar (Figure 3). Similar observations have been noted for other
conifer species during the growing season with antecedent dry and wet winters [59,60].
Ideally, sap-velocity would have been measured in multiple plots in both meadow sections
per the recommendations of existing sap-flow scaling logic research [61,62].

The MODIS ET comparison allows for an assessment of the simple lodgepole pine
transpiration estimates for RCM and the east and west strata part of the STRS. Overall, the
comparison suggests that the lodgepole pine transpiration estimates are of a reasonable
magnitude, especially for eastern RCM. The transpiration estimates for the three sap-
velocity radial profiles for the eastern stratum were generally lower than their MODIS ET
counterparts for the entirety of the campaign (Figures 10 and 11). This result is expected
because the sap-flow derived estimate neglects transpiration from other vegetation in
the meadow, as well as the soil and canopy evaporation considered by the MOD16A2
algorithm [63]. The residuals were closest to zero for the eastern stratum during fall 2019
and late summer 2020, which is likely explained by the dry soils and lack of wet canopy
surface during these periods (Figure 11b). In contrast, larger positive residuals correspond
with the winter and spring months when soil and canopy evaporation is expected to
comprise a substantial amount of ET. Consideration of soil evaporation likely explains the
discrepancy in the observed timing in peak MODIS ET and sap-flow-derived transpiration
during the 2020 growing season.

Negative residuals were calculated for the western stratum (Figure 11c). The negative
residuals occurred during late summer 2019, fall 2019, and summer 2020 and were espe-
cially pronounced for the fp,1(r) estimate. This disagreement might be due to inaccuracy
in the lodgepole pine transpiration estimate for the western stratum, a consequence of its
derivation from sap-flow measurements made in eastern RCM. However, the transpiration
estimates computed from the fp,2(r) and fp,3(r) radial profiles featured fewer negative
residuals compared to fp,1(r). Lodgepole pine transpiration would be expected to com-
prise a larger proportion of ET in western RCM relative to eastern RCM due to the high
lodgepole pine stem density and sapwood area, coupled with higher VWC (Table 1). This
emphasizes that the fp,1(r) radial profile likely overestimates lodgepole pine transpiration
in assuming a constant sap-velocity across the sapwood radial profile. Past research has
shown evidence that conifers, including lodgepole pine, generally exhibit a decrease in
sap-velocity magnitude with sapwood depth [47–49].

Differences between estimated transpiration and MODIS ET may also be attributed
to MOD16A2GF product pixel coarseness and/or limitations of the MOD16A2 algorithm
for RCM. Figure 11 suggests the former, as the MODIS ET composites are similar among
the east stratum, west stratum, and RCM. Notably, the MOD16A2 estimates are slightly
higher for the eastern stratum versus the western stratum, whereas we would expect the
opposite to be true. This similarity may be due to MOD16A2 pixel spatial distribution
and size. The pixels overlapping RCM are not independent for the two strata and capture
adjacent forested areas outside the meadow boundary. Furthermore, the findings of [64]
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suggest that the MODIS ET estimate for our study site may be lower than the true ET,
especially for the growing season months in the western stratum. In addition, [64] found
that monthly flux tower measurements in the Southern Sierra Nevada (CA, USA) were
consistently underestimated by the MOD16A2 ET product for wet and dry years at upper
(2700 m) elevation sites dominated by conifer species, including lodgepole pine. Also, [64]
attributed large underestimations of warm-season ET to the MOD16A2 algorithm imposing
an over-excessive VPD limitation on canopy conductance. The algorithm accounts for
water stress on transpiration using VPD [62].

4.2. Assessment of MJS Model-Informed Transpiration Estimates

The MJS-informed scaling and comparison to the simple scaling approach highlight
some of the benefits and limitations of using the calibrated model to estimate lodgepole
pine transpiration. The simple scaling transpiration estimates derived from the fp,1(r),
fp,2(r), and fp,3(r) radial profiles in the SFP that were underestimated by 6.11%, 5.61%,
and 4.92%, respectively, by the model (Table 3). Other studies have observed a similar
underestimation of hourly MJS model-based transpiration estimates [32].

Soil-moisture conditions were spatially and temporally variable throughout RCM
during the 2020 growing season. The benefit of including VWC in a scaling approach
compared to the simple scaling is apparent for the RCSM5 plot estimate. RCSM5 showed
ample soil moisture into the late growing season so that soil moisture conditions were
perceived as unlimited to lodgepole pine transpiration by the model (Figure 12d). The MJS
model validation for sap-velocity data in western RCM supports this, as observations of
high sap-velocity were maintained with observations of high VWC (Figure 5d). Therefore,
the simple scaling logic likely produces inaccurately low transpiration for the late-growing
season in the RCSM5 plot.

In contrast to RCSM5, RCSM1 and RCSM3 recorded VWC values commensurate
with the lodgepole pine transpiration soil moisture limitation perceived by the calibrated
model during the growing season. This contributed to lower predicted transpiration in
these plots compared to the simple scaling, especially after VWC dropped below 18.4%
(Figure 12b,c). The rate of decline in predicted transpiration was especially steep after this
threshold. This observation illuminates the poor constraints of the ks parameter in the
calibrated model; both RCSM1 and RCSM3 recorded VWC values lower than what was
observed in the SFP during the calibration period. We would have higher confidence in the
predicted transpiration in plots RCSM1 and RCSM3 had the model been calibrated using
the full range of VWC observations in all soil moisture-monitored plots. Also, our model
validation exercise was limited because we did not record any VWC values coincident with
the sap-velocity decline observed during model calibration. This has a greater bearing on
the model-derived transpiration estimates in RCSM3, as this plot was in western RCM.
There is uncertainty, therefore, if the lodgepole pine in this plot would respond consistently
with the SFP to declines in VWC.

Overall, these results emphasize the need to calibrate the model for a longer period
and at multiple meadow locations. There are some model deficiencies that limit the model-
informed scaling at RCM. Firstly, the approach requires knowledge about the average
maximum sap-velocity for lodgepole pine. The model used the average of the 99.5th-
percentile sap-velocity values from the instrumented SFP trees, but other studies using
an MJS scheme also rely on an observed maximum sap-velocity or transpiration rate for
a particular tree species [17,40]. Others allow this maximum to be parameterized in the
model [31–34,36,65]. In the model-based scaling, it was assumed that the derived maximum
average sap-velocity is spatially universal for RCM during the 2020 growing season. This is
an unlikely assumption, especially for extrapolation to western RCM, which provided the
soil moisture discrepancy in this meadow region. Secondly, the model used in this study is
not able to simulate nocturnal sap-velocity, as is the case with most MJS models [40].
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4.3. Sap-Velocity Response to Drivers during the Dry Growing Season

Like other studies on conifer sap-flow, fluctuations in solar radiation, VPD, and air tem-
perature appear to modulate the diurnal variability in lodgepole pine average sap-velocity,
while soil moisture regulates these relationships in the late growing season [17,18,39,66].
We note this study monitored and modeled using shallow soil moisture. Lodgepole pine
reached near-maximum transpiration when VPD was above 3.5 kPa and the air tempera-
ture was greater than 30 ◦C when the 45 cm VWC exceeded a threshold of approximately
0.23. The effect of the declining VWC on the relationship between normalized average
sap-velocity and each of the VPD and air temperature was apparent (Figure 4b–d).

Normalized average sap-velocity decline, in the 2020 growing season, corresponded
with an approximate decrease in VWC from 0.23 to 0.17 between late June and mid-August.
The soil moisture parameter, θ0, prescribes that the sap-velocity decline is centered on a
VWC value of 0.184. The range of VWC is coincident with sap-velocity decline, and the
θ0 parameter estimate is comparable to the results of other studies that assessed conifer
sap-flow response to declining soil moisture. For example, another study showed declines
in Pinus taeda stomatal conductance at a VWC threshold of 0.22 in clay loam soil [66].
A decline in Pinus contorta ssp. latifolia sap-flux density was found when soil moisture
declined from 0.35 to 0.24 at 0–45 cm of depth in an inceptisol soil during the late growing
season of a drought year [18]. We acknowledge that differences in soil properties between
sites likely impart variation in tree water-use response to soil water conditions. The SFP
in this study featured a sandy loam soil textural class, which typically has a field capacity
between 0.16 and 0.22 and a wilting point of 0.073 VWC [67]. Our observations of sap-
velocity decline and the θ0 model parameter fall within these field capacity bounds, but this
might be expected because conifers have been shown to be conservative with water use,
especially in drought years [68]. The other soil moisture function parameter, ks, describes
the rate of sap-velocity decline under limiting VWC conditions. Because we did not have
observations of VWC < 0.17 at the SFP, the decline-rate parameter for our site is not well
constrained for VWCs less than this value.

4.4. Model Performance Using DREAM(zs) and the GL Function

Several studies have empirically parameterized an MJS model to predict conifer
sap-velocity, sap-flux density, or transpiration. Some works have used an MCMC ap-
proach [17,32,40], while others have used optimization routines such as the genetic al-
gorithm and quasi-Newton gradient-descent method [34,65]. The use of the DREAM(ZS)
algorithm and the GL function in this study allowed for the avoidance of severe violations
of residual autocorrelation, non-normality, and heteroscedasticity. It also allowed for a
robust uncertainty assessment, which is useful when discussing model limitations and
generalities. Uncertainty analysis and residual violations are typically not thoroughly
addressed in empirical MJS parameterizations [69].

The strong performance of model fit for the validation period (RMSE = 0.1233) was
somewhat surprising, as the validation data were different both spatially and temporally
from the calibration data. Ignoring the magnitude of average sap-velocity, the response
of normalized average sap-velocity to meteorological drivers at the validation site was
similar to calibration (Figure 5a–c). High/maximum values of sap-velocity corresponded
with comparable values of air temperature, VPD, and VWC to calibration. The response of
sap-velocity to decreasing VWC into the late growing season is uncertain, but we might
expect a different response due to the difference in soil properties between calibration
and validation sites (e.g., sandy loam versus loam textural classes and differences in soil
organic matter content). The shortened validation period also may have impacted the data
normalization based on the average of the 99.5th-percentile sap-velocity values from each
tree. It is possible that the validation period failed to capture maximum sap-velocity for the
entire growing season, as data were not retrievable after July 6th. A lower normalization
constant would result in artificially high normalized average sap-velocity values and
likely poorer model performance. This might also explain the less negative PBIAS for the
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validation compared to calibration. The model tended to under-predict observations of
normalized average sap-velocity for both the calibration and validation periods, especially
for mid-day observations, corresponding with daily peaks (Figures 6 and 7). This concurs
with other studies that attribute underestimation to model structural deficiencies [32,40].
The failure of MJS models to simulate the full range of sap-flow observations is due to
the inability of the environmental stress functions to equal 1 at the same time [40]. One
structural deficiency in our fitted model was the VPD stress function that did not reach
the maximum normalized average sap-velocity over the observed domain of VPD values
(Figure 4b).

Lastly, the parameter and total predictive uncertainty confidence intervals suggest the
benefit of including an uncertainty analysis in an MJS model. Parameter uncertainty was
small relative to total predictive uncertainty, suggesting that consideration of parameter
uncertainty alone in our model was insufficient (Figures 7 and 8). MJS models have
many uncertainties stemming primarily from a basic understanding of the relationship
between environmental stressors and the tree physiology controlling water use. There is
also incomplete knowledge of the spatial and temporal variability of the environmental
input data and tree sap-flow response. The total uncertainty assessment is an attempt to
account for such uncertainties and to combat the simplifications made by the model. The
total uncertainty intervals for the calibration and validation periods seem reasonable, as
they enveloped close to the theoretically expected 95% of total observations (Figure 7). The
total uncertainty intervals captured most midday observations for both periods that were
systematically underestimated by our model formulation.

5. Conclusions

The transpiration estimates in this study were based on a sap-flow monitoring cam-
paign on a single plot of lodgepole pine in eastern RCM (SFP) where a sample of eight (8)
trees was instrumented for an approximately 1-year period. The data were used with an
STRS design of lodgepole pine sapwood depth in a simple, bottom-up sap-flow scaling
approach to estimate transpiration for the meadow. The MODIS ET product comparison
suggests the magnitude and timing of the estimated transpiration for each meadow parti-
tion in the STRS are reasonable, especially for the eastern stratum. However, the accuracy
of this approach would likely improve by instrumenting lodgepole pine in the western
stratum where soil water content was higher than in the eastern stratum. The agreement
between MODIS ET and the transpiration estimates in the eastern stratum suggests the
potential usefulness of using a small sample of trees for estimates of meadow transpiration.

The comparison of the calibrated MJS model informed transpiration scaling to simple
scaling transpiration estimates suggests the model-based approach incorporating soil
water content has potential for application in a montane meadow site water balance. It is
recommended that the model be calibrated over a sufficient period and/or multiple locales
within a study site.

Our MJS model and assessment of sap-velocity response to environmental drivers
suggests that future warmer and drier growing seasons in this region may present occur-
rences of limited lodgepole pine water consumption, especially in the late growing season.
This study was limited in a few aspects that prohibited rigorous exploration of certain
hydrologic and climatic characteristics that may influence lodgepole pine transpiration
in montane meadows within the context of a changing climate. The analysis in our study
did not allow an assessment of the relative effects of environmental drivers on predicted
sap-flow over the course of the growing season. A sensitivity coefficient analysis would be
useful in assessing the effects of climatic variables on tree water use in the early growing
season when soil moisture is non-limiting, which is relevant to anticipated shifts in energy
inputs with climate change. Second, no formal analysis was done to assess late-growing-
season rainfall effects on lodgepole pine transpiration due to the lack of precipitation events
in the late 2020 growing season.
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The performance results of the MJS model parameterized using the DREAM(ZS) algo-
rithm and the GL function in this study show potential for future use with MJS models.
The total predictive uncertainty analysis methodology in this modeling approach considers
the prevalent structural deficiencies of MJS models.
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